Development of Light Weight AA2024 Alpha Composites

2011 ◽  
Vol 690 ◽  
pp. 258-261 ◽  
Author(s):  
Jinugu Babu Rao ◽  
D. Venkata Rao ◽  
G. J. Catherin ◽  
N.R.M.R. Bhargava

Composites are most promising materials of recent interest. Metal matrix composites (MMCs) possess significantly improved properties compared to unreinforced alloys. There has been an increasing interest in composites containing low density and low cost reinforcements. Hence, composites with fly ash as reinforcement are likely to over come the cost barrier for wide spread applications in automotive and small engine applications. AA 2024 alloy – 2 to 10% (by weight) fly ash composites were made by stir casting route. Phase identification and structural characterization was carried out on fly ash by X-ray diffraction studies. Scanning electron microscopy and optical microscopy was used for microstructure analysis. The hardness, density and compression tests were carried out on all these alloy and composites. The SEM studies reveal that there was a uniform distribution of fly ash particles in the matrix phase and also very good bonding exists between the matrix and reinforcement. With increasing the amount of fly ash the density of the composites was decreased and the hardness was increased. The increase in compression strength was observed with increase in amount of fly ash.

2017 ◽  
Vol 25 (3) ◽  
pp. 209-214 ◽  
Author(s):  
G. Venkatachalam ◽  
A. Kumaravel

This paper presents the characterization of A356 composite reinforced with fly ash and basalt ash produced by stir casting method. Aluminium metal matrix composites (AMC) are used in wide variety of applications such as structural, aerospace, marine, automotive etc. Stir casting is cost effective manufacturing process and it is useful to enhance the attractive properties of AMCs. Three sets of hybrid AMC are prepared by varying the weight fraction of the reinforcements (3% basalt + 7% fly ash, 5% basalt + 5% fly, 7% basalt + 3% fly ash). The effect of reinforcements on the mechanical properties of the hybrid composites such as hardness, tensile, compressive and impact strength were studied. The obtained results reveal that tensile, compressive and impact strength was increased when weight fraction of fly ash increased, whereas the hardness increases when weight fraction of the basalt ash increased. Microscopic study reveals the dispersion of the reinforcements in the matrix.


2014 ◽  
Vol 21 (2) ◽  
pp. 181-189 ◽  
Author(s):  
Krishnan Ravi Kumar ◽  
Kothavady Mylsamy Mohanasundaram ◽  
Ramanathan Subramanian ◽  
Balasubramaniam Anandavel

AbstractThe present work aimed to study the tensile and impact behaviour of fly ash particle reinforced aluminium matrix composites. Fly ash particles reinforced aluminium (Al/3Cu/8.5Si) matrix composites were fabricated by the stir casting technique. Three different size ranges of fly ash particles (50–75, 75–103 and 103–150 μm) were used. The composites were subjected to tensile and impact tests. The tensile and impact fracture surfaces of the aluminium alloy and composites were investigated using a scanning electron microscope to characterise the fracture mechanism of the composites. The tensile strength of composites increased, while the ductility and impact strength of composites decreased with an increase in fly ash particle content. The fracture surface of the unreinforced material was characterised by uneven distribution of a large number of dimples resulting in ductile failure. In the case of composites, the presence of hard and brittle reinforcement particles in the ductile aluminium matrix places constraints on the plastic flow of the matrix leading to brittle failure with an increase in fly ash particles.


2019 ◽  
Vol 8 (3) ◽  
pp. 8897-8898

In the present work, properties such as wear rate, hardness, impact energy and microstructure of the Aluminum-fly ash composite synthesized by stir casting were investigated by varying the fly ash in the range of 5 and 15 by weight %. The phase identification and structural characterization was carried out on ALFA composites using SEM and EDAX tests and it was found that there was a uniform distribution of fly ash particles in the aluminum matrix phase. The hardness and the wear resistance increased and the impact energy decreased as the fly ash content in the ALFA composite was increased and it can be used as a light weight material for many engineering and non-engineering applications


Author(s):  
C. Krishnaraj ◽  
P. Divinesh ◽  
O.M. Mohaideen

The modern vehicles demand more thermal and mechanical properties as the speed of the vehicles is increasing. The materials used should be able to not only withstand the high temperatures but to dissipate it at a faster rate without deformation. This paper investigates the characteristics of silicon carbide (SiC) and fly ash in LM13 aluminium alloy matrix composite prepared by stir casting. The LM13 alloy has high thermal property which makes it ideal for making engines and gears. The effect of fly ash and SiC on LM13 and its influence on increasing the surface roughness was analyzed by varying their proportion. The addition of SiC and fly ash to the matrix composite increases the hardness and tensile strength of the composite which is validated by experimental results.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sakthi Sadhasivam RM ◽  
Ramanathan K. ◽  
Bhuvaneswari B.V. ◽  
Raja R.

Purpose The most promising replacements for the industrial applications are particle reinforced metal matrix composites because of their good and combined mechanical properties. Currently, the need of matrix materials for industrial applications is widely satisfied by aluminium alloys. The purpose of this paper is to evaluate the tribological behaviour of the zinc oxide (ZnO) particles reinforced AA6061 composites prepared by stir casting route. Design/methodology/approach In this study, AA6061 aluminium alloy matrix reinforced with varying weight percentages (3%, 4.5% and 6%) of ZnO particles, including monolithic AA6061 alloy samples, is cast by the most economical fabrication method, called stir casting. The prepared sample was subjected to X-ray photoelectron spectroscopy (XPS) analysis, experimental density measurement by Archimedian principle and theoretical density by rule of mixture and hardness test to investigate mechanical property. The dry sliding wear behaviour of the composites was investigated using pin-on-disc tribometer with various applied loads of 15 and 20 N, with constant sliding velocity and distance. The wear rate, coefficient of friction (COF) and worn surfaces of the composite specimens and their effects were also investigated in this work. Findings XPS results confirm the homogeneous distribution of ZnO microparticles in the Al matrix. The Vickers hardness result reveals that higher ZnO reinforced (6%) sample have 34.4% higher values of HV than the monolithic aluminium sample. The sliding wear tests similarly show that increasing the weight percentage of ZnO particles leads to a reduced wear rate and COF of 30.01% and 26.32% lower than unreinforced alloy for 15 N and 36.35% and 25% for 20 N applied load. From the worn surface morphological studies, it was evidently noticed that ZnO particles dispersed throughout the matrix and it had strong bonding between the reinforcement and the matrix, which significantly reduced the plastic deformation of the surfaces. Originality/value The uniqueness of this work is to use the reinforcement of ZnO particles with AA6061 matrix and preparing by stir casting route and to study and analyse the physical, hardness and tribological behaviour of the composite materials.


2015 ◽  
Vol 772 ◽  
pp. 263-267 ◽  
Author(s):  
Ramanathan Arunachalam ◽  
Majid Al-Maharbi ◽  
Yahya Al Kiyumi ◽  
Elyas Aal-Thani ◽  
Mohammed Al Mafraji

Metal matrix composites (MMC's) have attracted the attention of researchers for quite some time. In the last 15 years, many studies have been reported in this field of MMC production through various routes. The most commonly used process for producing MMC is stir casting process whereby the reinforcement material is incorporated into the molten metal by stirring. It is a relatively low cost manufacturing process that is capable of producing high quality MMC. However, the process is associated with issues such as attaining uniform distribution of particles, wettability between particles and porosity in the MMCs. Because of these challenges, there has been continuous improvement in the process as well as the design of the furnace. In this research, an innovatively designed bottom tapping furnace has been used to produce the MMCs and the produced sample is characterized.


Author(s):  
Srinivasa Prasad Katrenipadu ◽  
Swami Naidu Gurugubelli

Nano-fly ash particles reinforced Al-10wt%Mg alloy matrix composites produced by stir-casting method were tested for their ageing response. Ageing studies were performed at 160 °C, 200 °C and 240 °C temperatures and a maximum peak hardness of 142 VHN was observed during ageing at 200 °C for the composite with 10 wt% nano fly ash reinforcement. This is due to rapid nucleation and growth of βI particles at this temperature. Experiments were designed for different compositions and different ageing temperatures on the basis of the Design of Experiments technique. The factorial design is considered to improve the reliability of results and to reduce the size of experimentation without loss of accuracy. A model to predict the ageing behaviour of the composites was developed with the terms of 5, 10 and 15% weight fraction of fly ash at 160 °C, 200 °C and 240 °C ageing temperatures. The developed regression model was validated by statistical software MINITAB-R17.1.0. It was found that the developed regression model could be effectively used to predict the ageing behavior at 95% confidence level.


Author(s):  
K H W Seah ◽  
S C Sharma ◽  
M Krishna

The mechanical properties and the fracture mechanism of composites consisting of ZA-27 alloy reinforced with titanium dioxide particles were investigated with the primary objective of understanding the influence of the particulate reinforcement on the mechanical behaviour of the ZA-27 alloy. The titanium dioxide particle content in the composites ranged from 0 to 6 per cent, in steps of 2 wt %. The composites were fabricated by the stir casting technique in which the reinforcement particles were dispersed in the vortex created in the molten matrix alloy. The study revealed improvements in Young's modulus, ultimate tensile strength (UTS), compressive strength, yield strength and hardness of the composites as the titanium dioxide content was increased, but at the expense of ductility and impact strength. The fracture behaviour of the composite was also significantly influenced by the presence of titanium dioxide particles. Eventual fracture was a result of crack propagation through the matrix as well as through the reinforcing particles. Scanning electron microscopy and fractography analyses were carried out to provide suitable explanations for the observed phenomena.


2019 ◽  
Vol 24 (No 1) ◽  
pp. 12-19
Author(s):  
S. Vimal Anand ◽  
G. Venkatachalam ◽  
Tushar D. Nikam ◽  
Omkar V. Jog ◽  
Ravi T. Suryawanshi

In the last few years, green composites are becoming more suitable for applications over synthetic composite. There has been a growing interest in recent years in the utilisation of natural fibres in making low-cost building material. However, these natural fibre-based composites are not fully environmentally friendly because the matrix resins are non-biodegradable. In this paper, an attempt is made to fabricate green composites with coir, banana, and aloe vera fibres as reinforcement and hybrid polymer as matrix. The hybrid polymer is prepared from natural and synthetic resins. This work intends to find the vibrational characteristics of these composites. The influence of three parameters, i.e. CNSL in hybrid polymer, fibre volume, and fibre discontinuities on vibrational characteristics are considered. This work is carried out using FEA and the FEA results are validated by experimental results.


2012 ◽  
Vol 710 ◽  
pp. 365-370 ◽  
Author(s):  
Sujayakumar Prasanth ◽  
Kumaraswamy Kaliamma Ajith Kumar ◽  
Thazhavilai Ponnu Deva Rajan ◽  
Uma Thanu Subramonia Pillai ◽  
Bellambettu Chandrasekhara Pai

Magnesium metal matrix composites (MMCs) have been receiving attention in recent years as an attractive choice for aerospace and automotive applications because of their low density and superior specific properties. Using stir casting process, AZ91 magnesium alloy metal matrix composites have been produced with different weight percentages (5, 10, 15, 20 and 25) of silicon carbide particles (SiCp) addition. Microstructural characterization reveals uniform distribution of SiC particles with good interfacial bonding between the matrix and reinforcement. Electrical conductivity and Co-efficient of Thermal Expansion (CTE) measurements carried out on these composites have yielded better properties. Improved mechanical properties such as hardness, ultimate tensile strength, and compressive strength are obtained. The microfracture mechanisms involved during tensile fracture is analyzed and correlated with the properties obtained.


Sign in / Sign up

Export Citation Format

Share Document