Study of Morphology Membrane of Polymeric Nanocomposites Obtained by Phases Inversion

2014 ◽  
Vol 775-776 ◽  
pp. 498-503 ◽  
Author(s):  
Keila Machado Medeiros ◽  
Taciana Regina de Gouveia Silva ◽  
Dayanne Diniz Souza Morais ◽  
Luana Rodrigues Kojuch ◽  
Edcleide Maria Araújo ◽  
...  

In this work, were obtained nanocomposite membranes polyamide66/Paraíba bentonite clay, treated with a quaternary ammonium salt in order to make it organophilic. The membranes were prepared as thin films using the technique of phase inversion from the nanocomposites obtained by solution. The membranes were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetry (TG) and scanning electron microscopy (SEM). By means of X-ray diffractogram, it was revealed that the membranes remained organically treated clay presented exfoliated and/or partially exfoliated structure. From curves of DSC and TG, it was observed that membrane of PA66 with 3% w/w of with treatment clay showed higher thermal stability compared with the same content of clay without treatment. From the SEM photomicrographs, there was a selective layer (skin filter) on top and one porous layer at the bottom of all membranes studied. Moreover, it was verified that the presence of clay provided a significant structural modification in the membranes of polymer nanocomposites.

2012 ◽  
Vol 727-728 ◽  
pp. 899-903 ◽  
Author(s):  
Keila Machado Medeiros ◽  
Taciana Regina de Gouveia Silva ◽  
Luana Rodrigues Kojuch ◽  
Edcleide Maria Araújo ◽  
Hélio Lucena Lira

Bentonites are the most used fillers in the development of nanocomposites, due to their characteristics that provide nanosized particles, contributing to a large contact area between the clay and the polymer. In general, the additions of small amounts of organoclay improve the mechanical and thermal properties of nanocomposites. Bentonite clays and organoclays were characterized by X-ray fluorescence (XRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and thermogravimetry (TG). The results of XRF, XRD and FTIR confirmed the presence of quaternary ammonium salt in the organoclay structure. From TG, it was observed that the organoclay showed better thermal stability when compared with bentonite clay.


2016 ◽  
Vol 30 (6) ◽  
pp. 741-761 ◽  
Author(s):  
Verónica Riechert ◽  
Marcelo D Failla ◽  
Lidia M Quinzani

Polymeric nanocomposites based on poly(propylene- co-ethylene- co-1-butene) (PEBC) were elaborated by melt mixing using an organophilic montmorillonite (o-MMT) and maleated PEBC (PEBCg) as compatibilizer. The effect of clay concentration, PEBCg:o-MMT ratio, and grafting degree of the compatibilizer were studied. X-ray diffraction and scanning electron microscopy show formation of partially intercalated structures in all compatibilized composites with well-distributed small tactoids. According to the differential scanning calorimetry results, the anhydride groups of the compatibilizer have a marginal nucleating effect, while the o-MMT causes a slight decrease in the crystallization temperature of the polymer. PEBC presents the largest activation energy of crystallization ( Eα), while the composites show lower Eα than their matrices. It is also observed that the rate of degradation of PEBC is not affected by the presence of PEBCg. The nanoclay, on the other hand, retards the decomposition process of the polymeric matrix in about 40°C and augments its rate of degradation approximately four times.


2014 ◽  
Vol 775-776 ◽  
pp. 233-237 ◽  
Author(s):  
Dayanne Diniz Souza Morais ◽  
Renata Barbosa ◽  
Keila Machado Medeiros ◽  
Edcleide Maria Araújo ◽  
Tomás Jefférson Alves de Mélo

Recent advances in biodegradable polymers have attracted a great interest not only in traditional areas such as biomedical and pharmaceutical industry, but also in packaging applications, articles and injected membranes. The aim of this work was to produce bio-nanocomposites poly (lactic acid) - PLA with bentonite clay. The bio-nanocomposites were produced by melt intercalation with incorporation of 1 to 3 wt% of organoclay. The degree of dispersion of clays in the polymer, and consequently the structure of bio-nanocomposites produced was evaluated by X-ray diffraction (XRD), and the thermal properties were studied by differential scanning calorimetry (DSC). XRD results indicated the formation of intercalated structures. It was observed the appearance of crystalline melting double peaks in bio-nanocomposites PLA.


Author(s):  
D. Nagasamy Venkatesh ◽  
S. Karthick ◽  
M. Umesh ◽  
G. Vivek ◽  
R.M. Valliappan ◽  
...  

Roxythromycin/ β-cyclodextrin (Roxy/ β-CD) dispersions were prepared with a view to study the influence of β-CD on the solubility and dissolution rate of this poorly soluble drug. Phase-solubility profile indicated that the solubility of roxythromycin was significantly increased in the presence of β-cyclodextrin and was classified as AL-type, indicating the 1:1 stoichiometric inclusion complexes. Physical characterization of the prepared systems was carried out by differential scanning calorimetry (DSC), X-ray diffraction studies (XRD) and IR studies. Solid state characterization of the drug β-CD binary system using XRD, FTIR and DSC revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement of dissolution rate.


2015 ◽  
Vol 51 (2) ◽  
pp. 255-263
Author(s):  
Rupali Nanasaheb Kadam ◽  
Raosaheb Sopanrao Shendge ◽  
Vishal Vijay Pande

<p>The use of nanotechnology based on the development and fabrication of nanostructures is one approach that has been employed to overcome the challenges involved with conventional drug delivery systems. Formulating Nanoplex is the new trend in nanotechnology. A nanoplex is a complex formed by a drug nanoparticle with an oppositely charged polyelectrolyte. Both cationic and anionic drugs form complexes with oppositely charged polyelectrolytes. Compared with other nanostructures, the yield of Nanoplex is greater and the complexation efficiency is better. Nanoplex are also easier to prepare. Nanoplex formulation is characterized through the production yield, complexation efficiency, drug loading, particle size and zeta potential using scanning electron microscopy, differential scanning calorimetry, X-ray diffraction and dialysis studies. Nanoplex have wide-ranging applications in different fields such as cancer therapy, gene drug delivery, drug delivery to the brain and protein and peptide drug delivery.</p>


Polymers ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 721 ◽  
Author(s):  
Jorge A. Ramírez-Gómez ◽  
Javier Illescas ◽  
María del Carmen Díaz-Nava ◽  
Claudia Muro-Urista ◽  
Sonia Martínez-Gallegos ◽  
...  

Atrazine (ATZ) is an herbicide which is applied to the soil, and its mechanism of action involves the inhibition of photosynthesis. One of its main functions is to control the appearance of weeds in crops, primarily in corn, sorghum, sugar cane, and wheat; however, it is very toxic for numerous species, including humans. Therefore, this work deals with the adsorption of ATZ from aqueous solutions using nanocomposite materials, synthesized with two different types of organo-modified clays. Those were obtained by the free radical polymerization of 4-vinylpyridine (4VP) and acrylamide (AAm) in different stoichiometric ratios, using tetrabutylphosphonium persulfate (TBPPS) as a radical initiator and N,N′-methylenebisacrylamide (BIS) as cross-linking agent. The structural, morphological, and textural characteristics of clays, copolymers, and nanocomposites were determined through different analytical and instrumental techniques, i.e., X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption kinetics experiments of ATZ were determined with the modified and synthesized materials, and the effect of the ratio between 4VP and AAm moieties on the removal capacities of the obtained nanocomposites was evaluated. Finally, from these sets of experiments, it was demonstrated that the synthesized nanocomposites with higher molar fractions of 4VP obtained the highest removal percentages of ATZ.


Biomolecules ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 220
Author(s):  
Alessio Ausili ◽  
Inés Rodríguez-González ◽  
Alejandro Torrecillas ◽  
José A. Teruel ◽  
Juan C. Gómez-Fernández

The synthetic estrogen diethylstilbestrol (DES) is used to treat metastatic carcinomas and prostate cancer. We studied its interaction with membranes and its localization to understand its mechanism of action and side-effects. We used differential scanning calorimetry (DSC) showing that DES fluidized the membrane and has poor solubility in DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) in the fluid state. Using small-angle X-ray diffraction (SAXD), it was observed that DES increased the thickness of the water layer between phospholipid membranes, indicating effects on the membrane surface. DSC, X-ray diffraction, and 31P-NMR spectroscopy were used to study the effect of DES on the Lα-to-HII phase transition, and it was observed that negative curvature of the membrane is promoted by DES, and this effect may be significant to understand its action on membrane enzymes. Using the 1H-NOESY-NMR-MAS technique, cross-relaxation rates for different protons of DES with POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) protons were calculated, suggesting that the most likely location of DES in the membrane is with the main axis parallel to the surface and close to the first carbons of the fatty acyl chains of POPC. Molecular dynamics simulations were in close agreements with the experimental results regarding the location of DES in phospholipids bilayers.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Xianjie Yuan ◽  
Xuanhui Qu ◽  
Haiqing Yin ◽  
Zaiqiang Feng ◽  
Mingqi Tang ◽  
...  

This present work investigates the effects of sintering temperature on densification, mechanical properties and microstructure of Al-based alloy pressed by high-velocity compaction. The green samples were heated under the flow of high pure (99.99 wt%) N2. The heating rate was 4 °C/min before 315 °C. For reducing the residual stress, the samples were isothermally held for one h. Then, the specimens were respectively heated at the rate of 10 °C/min to the temperature between 540 °C and 700 °C, held for one h, and then furnace-cooled to the room temperature. Results indicate that when the sintered temperature was 640 °C, both the sintered density and mechanical properties was optimum. Differential Scanning Calorimetry, X-ray diffraction of sintered samples, Scanning Electron Microscopy, Energy Dispersive Spectroscopy, and Transmission Electron Microscope were used to analyse the microstructure and phases.


Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 533 ◽  
Author(s):  
Xin Zhang ◽  
Guanghui Li ◽  
Jinxiang You ◽  
Jian Wang ◽  
Jun Luo ◽  
...  

Ludwigite ore is a typical low-grade boron ore accounting for 58.5% boron resource of China, which is mainly composed of magnetite, lizardite and szaibelyite. During soda-ash roasting of ludwigite ore, the presence of lizardite hinders the selective activation of boron. In this work, lizardite and szaibelyite were prepared and their soda-ash roasting behaviors were investigated using thermogravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), and scanning electron microscope and energy dispersive spectrometer (SEM-EDS) analyses, in order to shed light on the soda-ash activation of boron within ludwigite ore. Thermodynamics of Na2CO3-MgSiO3-Mg2SiO4-Mg2B2O5 via FactSage show that the formation of Na2MgSiO4 was preferential for the reaction between Na2CO3 and MgSiO3/Mg2SiO4. While, regarding the reaction between Na2CO3 and Mg2B2O5, the formation of NaBO2 was foremost. Raising temperature was beneficial for the soda-ash roasting of lizardite and szaibelyite. At a temperature lower than the melting of sodium carbonate (851 °C), the soda-ash roasting of szaibelyite was faster than that of lizardite. Moreover, the melting of sodium carbonate accelerated the reaction between lizardite with sodium carbonate.


Sign in / Sign up

Export Citation Format

Share Document