Unidirectional Solidification of Pb-Sn Alloys in a Rotating Magnetic Field

2014 ◽  
Vol 790-791 ◽  
pp. 408-413 ◽  
Author(s):  
Jenő Kovács ◽  
Arnold Rónaföldi ◽  
András Roósz

Cylindrical Pb-Sn alloy samples (diameter: 8 mm, length: 120 mm) of different compositions (30, 40 and 50 wt.% of Sn) were prepared from high pure (4N) components. The unidirectional solidification experiments have been performed according to the upward vertical Bridgman-method by using a rotating magnetic field (RMF) with a magnetic induction of 150 mT and with a frequency of 50 Hz. The sample-movement velocity was constant (0.05 mm/s) and the temperature gradient changed from 7 to 3 K/mm during the solidification process. The first half of samples was solidified without using the magnetic field and the second half was solidified by using the magnetic field. Under the influence of this strong flow induced by the magnetic field, the columnar microstructure of the first part decomposed and a characteristic "Christmas tree"- like macrosegregated structure with equiaxed Pb-dendrites was developed. The secondary dendrite arm spacing (SDAS) and the volume percent of primary Pb-phase (dendrite) were measured by an automatic image analyser on the longitudinal polished sections along the whole length of the samples. The effect of the forced melt flow on the micro-and macrostructure was studied in case of the different sample compositions.

Author(s):  
Kenichi Kamioka ◽  
Ryuichiro Yamane

The experiments are conducted on the magnetic fluid flow induced by the multi-pole rotating magnetic field in a circular cylinder. The numbers of poles are two, four, six, eight and twelve. The applied electric current and frequency are 2∼6 A and 20∼60 Hz, respectively. The peak velocity of the flow increases with the increase in the strength and the phase velocity of the magnetic field. As the increase in the number of poles, the flow shifts to the outer periphery.


2017 ◽  
Vol 38 (4) ◽  
pp. 555-565
Author(s):  
Alicja Przybył ◽  
Rafał Rakoczy ◽  
Maciej Konopacki ◽  
Marian Kordas ◽  
Radosław Drozd ◽  
...  

Abstract The aim of the study was to present an experimental investigation of the influence of the RMF on mixing time. The obtained results suggest that the homogenization time for the tested experimental set-up depending on the frequency of the RMF can be worked out by means of the relationship between the dimensionless mixing time number and the Reynolds number. It was shown that the magnetic field can be applied successfully to mixing liquids.


2014 ◽  
Vol 790-791 ◽  
pp. 384-389
Author(s):  
Dirk Räbiger ◽  
Bernd Willers ◽  
Sven Eckert

This paper presents an experimental study which in a first stage is focused on obtaining quantitative information about the isothermal flow field exposed to various magnetic field configurations. Melt stirring has been realized by utilizing a rotating magnetic field. In a second step directional solidification of AlSi7 alloys from a water-cooled copper chill was carried out to verifythe effect of a certain flow field on the solidification process and on the resulting mechanical properties. The solidified structure was reviewed in comparison to an unaffected solidified ingot. Measurements of the phase distribution, the grain size, the hardness and the tensile strength were realized. Our results demonstrate the potential of magnetic fields to control the grain size, the formation of segregation freckles and the mechanical properties. In particular, time–modulated rotating fields show their capability to homogenize both the grain size distribution and the corresponding mechanical properties.


2011 ◽  
Vol 311-313 ◽  
pp. 600-608
Author(s):  
Zhao Chen ◽  
Xiao Li Wen ◽  
Chang Le Chen

Solidification behaviour of Pb-Bi alloys under rotating magnetic field (RMF) was investigated experimentally to understand the effect of the frequency of RMF on the nucleation and growth behaviour. It was found that, as the increase of the rotating frequency, the grains are fragmented and refined gradually until a transition from columnar to equiaxed microstructures happens at a rotating frequency of 40 Hz. Moreover, the Bi concentration of the primary phase decreases and macrosegregation is eliminated effectively with RMF. These are due to the effect of RMF on the nucleation, growth and fluid flow in the solidification process.


2011 ◽  
Vol 1310 ◽  
Author(s):  
Vittorio Basso ◽  
Carlo P. Sasso ◽  
Michaela Kuepferling

ABSTRACTIn this paper we review the phase diagram and derive the entropy change for spin reorientation transitions by considering first order magnetization process theory with temperature dependent magneto-crystalline anisotropy constants. We derive the magnetic field-induced entropy change Δs for a transition between easy axis and easy plane, showing that for alternating magnetic field, Δs has a change of sign at the reorientation temperature, while for rotating magnetic field its sign is definite. We apply the model to CoZn W-type barium ferrite.


1989 ◽  
Vol 42 (1) ◽  
pp. 153-164 ◽  
Author(s):  
D. A. Diver ◽  
E. W. Laing ◽  
C. C. Sellar

We have studied wave propagation in a cold plasma, in the presence of a spatially rotating magnetic field of constant magnitude. New features introduced by this variation include streaming velocities and a plasma current in equilibrium and density fluctuations. We present only the case of wave propagation along the axis of rotation of the magnetic field. A set of ordinary differential equations for the electric field components is obtained, which may be combined into a single fourth-order ordinary differential equation with periodic coefficients. Solutions are obtained in closed form and their nature is determined in terms of the physical parameters of the System, magnetic field strength, number density and wave frequency.


Author(s):  
D. Martínez ◽  
J. A. Reyes ◽  
G. Reyes ◽  
C. G. Avendaño

In this paper, we consider a clockwise rotating magnetic field around the [Formula: see text]-axis and charge carriers which impinge normally to the [Formula: see text] plane. We obtained analytically the spectrum of the momentum operator [Formula: see text] and found the existence of a band structure from which the movement of these charge carries is filtered according to the spatial period of the magnetic field or its intensity. Also we exhibit the existence of three band gaps (one total or primary and two partials) whose width depends on the system parameters.


2010 ◽  
Vol 297-301 ◽  
pp. 254-262
Author(s):  
Sabrina Nouri ◽  
Mouhamed Benzeghiba ◽  
Ahmed Benzaoui

Numerical computation is achieved in an axisymmetric configuration to analyze the magnetic field effect on thermosolutal convection during vertical solidification of a binary alloy. The bath is exposed to a uniform temperature profile in unsteady state. During the growth three regions appear: liquid, mushy and solid zones. The mushy zone is assimilated to porous medium. A mathematical model of heat, momentum and solute transfer has been developed in primitive variables (pressure-velocity). A single domain approach (enthalpy method) is used to build the equations system. In this context, a computer code has been developed and validated with previous studies. The results in term of stream function and solute concentration show the strong effect of the magnetic field on the fluid flow and on the solutal stratification. The effects of magnetic field and melt convection intensity were demonstrated. The main results show that the quality of highly doped binary alloy crystals can be improved when the growth process occurs at low pulling rates and under a magnetic field.


2006 ◽  
Vol 129 (2) ◽  
pp. 241-243 ◽  
Author(s):  
X. Wang ◽  
N. Ma

During the vertical Bridgman process, a single semiconductor crystal is grown by the solidification of an initially molten semiconductor contained in an ampoule. The motion of the electrically conducting molten semiconductor can be controlled with an externally applied magnetic field. This paper treats the flow of a molten semiconductor and the dopant transport during the vertical Bridgman process with a periodic transverse or rotating magnetic field. The frequency of the externally applied magnetic field is sufficiently low that this field penetrates throughout the molten semiconductor. Dopant distributions in the crystal are presented.


Sign in / Sign up

Export Citation Format

Share Document