Influence of AlCuSc Ternary Phase on the Microstructure and Properties of 1469 Alloy

2014 ◽  
Vol 794-796 ◽  
pp. 1057-1062 ◽  
Author(s):  
Min Jia ◽  
Zi Qiao Zheng ◽  
Xian Fu Luo

Microstructure evolution and mechanical properties of a 1469 alloy and a Sc-free1469 type alloy were examined. SEM observation indicates that AlCuSc ternary phases (W) are formed after homogenization annealing, and cannot be dissolved during the following heat treatments. These coarse particles consume abundant Cu atoms from the Al matrix that are available for solutioning, which results in the decrease of precipitation of the T1 phase during aging treatment. The W phase has negative effects on the examined alloy’s mechanical properties. The tensile strength of Sc-added alloy is 40MPa lower than that of the Sc-free alloy. The formation of the W phase has a close relationship with Cu/Sc ratio, which shows the importance of controlling the concentration of Cu and addition of Sc. Formation of W phase suppress the effect of precipitation hardening of the T1 phase in high strength Al-Cu-Li alloys

2017 ◽  
Vol 739 ◽  
pp. 220-224
Author(s):  
Agung Purniawan ◽  
Sutarsis ◽  
Sigit Tri Wicaksono

Magnesium alloys have been widely applied in the automotive world cars or motorcycles and aircraft engines. This is because the weight of the magnesium itself is very lightweight and have high strength. And magnesium alloys have good thermal conductivity, high elastic modulus and good mechanical properties. Magnesium in engineering applications is usually in the mix with elements such as Al, Ag, Mn, Zn, Si, Zr and RE (rare element). Magnesium alloys with zinc are mostly found and used. This research has been carried out precipitation hardening treatment-Mg alloy-0.5Y 6Zn using variable temperature 150oC, 175oC and 200oC with a holding time of 12 hours, 24 hours and 36 hours. The results show microstructure formed is αMg, MgZn, and Mg3Zn6Y (i-Phase). The formation of precipitates during the process of aging raise hardness values up to 75.8 BHN. Aging treatment reduces the thermal resistance of the alloy Mg-6Zn-0.5%Y.


Alloy Digest ◽  
1982 ◽  
Vol 31 (7) ◽  

Abstract JESSOP JS17Cr-4Ni is a martensitic, precipitation-hardening chromium-nickel-copper stainless steel. It provides an excellent combination of high strength and hardness, short-time low-temperature precipitation hardening and good mechanical properties at temperatures up to 600 F (316 C). Its corrosion resistance is quite good but inferior to lower strength grades produced for corrosion-resistance applications. JS17Cr-4Ni is used widely for critical applications in the aerospace, chemical, food processing and other industries. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-412. Producer or source: Jessop Steel Company.


2014 ◽  
Vol 794-796 ◽  
pp. 851-856
Author(s):  
Tadashiege Nagae ◽  
Nobuhiro Tsuji ◽  
Daisuke Terada

Accumulative roll-bonding (ARB) process is one of the severe plastic deformation processes for fabricating ultrafine grained materials that exhibit high strength. In aluminum alloys, aging heat treatment has been an important process for hardening materials. In order to achieve good mechanical properties through the combination of grain refinement hardening and precipitation hardening, an Al-4.2wt%Ag binary alloy was used in the present study. After a solution treatment at 550°C for 1.5hr, the alloy was severely deformed by the ARB process at room temperature (RT) up to 6 cycles (equivalent strain of 4.8). The specimens ARB-processed by various cycles (various strains) were subsequently aged at 100, 150, 200, 250°C, and RT. The hardness of the solution treated (ST) specimen increased by aging. On the other hand, hardness of the ARB processed specimen decreased after aging at high temperatures such as 250°C. This was probably due to coarsening of precipitates or/and matrix grains. The specimen aged at lower temperature showed higher hardness. The maximum harnesses achieved by aging for the ST specimen, the specimens ARB processed by 2 cycles, 4 cycles and 6 cycles were 55HV, 71HV, 69HV and 65HV, respectively. By tensile tests it was shown that the strength increased by the ARB process though the elongation decreased significantly. However, it was found that the tensile elongation of the ARB processed specimens was improved by aging without sacrificing the strength. The results suggest that the Al-Ag alloy having large elongation as well as high strength can be realized by the combination of the ARB process for grain refinement and the subsequent aging for precipitation hardening.


2007 ◽  
Vol 353-358 ◽  
pp. 715-717
Author(s):  
Jian Peng ◽  
Rong Shen Liu ◽  
Ding Fei Zhang ◽  
Cheng Meng Song

The microstructures and mechanical properties of Mg-Zn-Zr-Y alloy extruded bar with different heat treatment processes were investigated, including solution treatments of 400 oC, 450 oC and 500 oC for 3 hours followed by 170 oC×24h aging treatment, and solely aging treatments of 160 oC, 180 oC for 24hours without solution after extruding. By comparing the grain size, strength and elongation of the samples, the heat treatment processes for extruded products with high strength and with medium strength were recommended.


2020 ◽  
Vol 405 ◽  
pp. 133-138
Author(s):  
Ludmila Kučerová ◽  
Andrea Jandová ◽  
Ivana Zetková

Maraging steel is an iron-nickel steel alloy, which achieves very good material properties like high toughness, hardness, good weldability, high strength and dimensional stability during heat treatment. In this work, maraging steel 18Ni-300 was manufactured by selective laser melting. It is a method of additive manufacturing (AM) technology, which produces prototypes and functional parts. Sample of additively manufactured and conventional steel with the same chemical composition were tested after in three different states – heat treated (as-built/as-received), solution annealed and precipitation hardened. Resulting microstructures were analysed by light and scanning electron microscopy and mechanical properties were obtained by hardness measurement and tensile test. Cellular martensitic microstructures were observed in additively manufactured samples and conventional maraging steel consisted of lath martensitic microstructures. Very similar mechanical properties were obtained for both steels after the application of the same heat treatment. Ultimate tensile strengths reached 839 – 900 MPa for samples without heat treatment and heat treated by solution annealing, the samples after precipitation hardening had tensile strengths of 1577 – 1711 MPa.


1983 ◽  
Vol 27 ◽  
Author(s):  
P.B. Madakson

ABSTRACTCommercially pure Al was implanted with 300 keV Si+ and 200 keV Pb+ to doses of between l011 and 1017 ions/cm2. Changes in friction, wear, oxidation and hardness were investigated. Silicon increased the hardness and wear resistance of Al and significantly decreased friction and the oxidation of the implanted surface. These changes were observed to be almost proportional to the implanted dose. The implantation of Pb+ resulted in a linear increase in hardness and a decrease in surface oxidation with dose. Friction decreased and wear resistance increased but the changes were not dose dependent. The implantation of Si+ did not significantly alter the distribution of impurities, such as Fe and Cu within the Al matrix, but Pb+ resulted in a diffusion of Fe to the implanted surface. Formation of precipitates was observed and the improvements in the surface properties studied are considered to result from precipitation hardening, which involves the impediment of dislocation movement by the precipitates during plastic deformation of the implanted Al.


Author(s):  
Nao Otaki ◽  
Tomoaki Hamaguchi ◽  
Takahiro Osuki ◽  
Yuhei Suzuki ◽  
Masaki Ueyama ◽  
...  

Abstract In petroleum refinery plants, materials with high sensitization resistance are required. 347AP has particularly been developed for such applications and shows good sensitization resistance owing to its low C content. However, further improvement in high temperature strength is required for high temperature operations in complex refineries, such as delayed cokers. Recently, a new austenitic stainless steel (low C 18Cr-11Ni-3Cu-Mo-Nb-B-N, UNS No. S34752) with high sensitization resistance and high strength at elevated temperatures has been developed. In this study, the mechanical properties and microstructures of several aged specimens will be reported. By conducting several aging heat treatments in the range of 550–750 °C for 300–10,000 h on the developed steel, it was revealed that there were only few coarse precipitates that assumed sigma phase even after aging at 750 °C for 10,000 h. This indicates that the newly developed steel has superior phase stability. The developed steel drastically increased its Vickers hardness by short-term aging treatments. Through transmission electron microscopy observations, the fine precipitates of Cu-rich phase were observed dispersedly in the ruptured specimen. Therefore, the increase in Vickers hardness in short-term aging is possibly owing to the dispersed precipitation of Cu-rich phase. There was further increase in Vickers hardness owing to Z phase precipitation; however, the increment was smaller than that caused by Cu-rich phase. The newly developed alloy demonstrated excellent creep rupture strength even in the long-term tests of approximately 30,000 h, which is attributed to these precipitates.


Alloy Digest ◽  
1967 ◽  
Vol 16 (4) ◽  

Abstract Carpenter Custom 455 is a low-carbon martensitic stainless steel that responds to precipitation-hardening. The single aging treatment produces exceptionally high yield strength with good ductility and toughness. It is suitable for applications requiring high strength and corrosion resistance at temperatures up to 800 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness and fatigue. It also includes information on forming, heat treating, machining, joining, and surface treatment. Filing Code: SS-193. Producer or source: Carpenter.


Alloy Digest ◽  
1969 ◽  
Vol 18 (9) ◽  

Abstract UDIMAR B-300 is an 18% nickel maraging steel having excellent toughness and ductility at high strength levels. It is a fabricable and weldable ultra-high strength alloy steel combining the mechanical properties derived from precipitation hardening and martensitic transformation. It has increased cobalt content compared with UDIMAR B-250 (Alloy Digest SA-206, February 1967). This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fracture toughness, creep, and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SA-244. Producer or source: Special Metals.


Metals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 802
Author(s):  
Xi Chen ◽  
Zhao Zhang ◽  
Faqin Xie ◽  
Xiangqing Wu ◽  
Tiejun Ma ◽  
...  

The knowledge of process parameters–weld integrity-aging treatments–tensile property relationship is of great concern for linear friction welded (LFWed) Ti2AlNb-based alloy and requires a systematic characterization. Thus, the Ti2AlNb-based alloy was LFWed under various process parameters and then subjected to different aging treatments. Twelve welding conditions were used to evaluate the weld integrity, showing that impurities and cracks at weld interface can be eliminated under strong welding parameters and the feed rate has the greatest influence on the weld integrity among all process parameters. Relationships among aging temperatures, microstructure evolution, and mechanical properties were investigated. After aging treatment, acicular O phase has precipitated in B2 grains both in the weld zone and thermo-mechanical affected zone (TMAZ). The size of precipitated O phase increases along with the increase of temperature, and the α2 +·O mixtures have finally decomposed into the aggregated acicular O phase. The microhardness and tensile strength of the joints have been enhanced due to the precipitation hardening of O phase and refined grain strengthening after aging treatments.


Sign in / Sign up

Export Citation Format

Share Document