Effect of Long-Term Aging on Microstructure and Mechanical Properties of a Wrought Ni-Base Superalloy

2015 ◽  
Vol 816 ◽  
pp. 546-550
Author(s):  
Chao Yuan ◽  
Huan Wang ◽  
Jian Ting Guo ◽  
He Yong Qin

During long-term and high temperature service, microstructures of superalloys may change and then have an adverse impact on mechanical properties, so the stabilities of a wrought Ni-base superalloy aging without stress at 650°C were investigated in this paper. The results showed that the size and morphology of γ' precipitates in the alloy were not obviously influenced with the increase of exposure time, and primary MC carbides present excellent thermal stability. Moreover, almost no detrimental phase was found. Tensile strength and plasticity at room temperature after aging remained steady. Under the condition of 650°C/823MPa, the stress ruptures life presented increasing trend overall and plasticity decreases slightly. In conclusion, the experiment alloy presents a good thermal stability at 650°C.

RSC Advances ◽  
2015 ◽  
Vol 5 (89) ◽  
pp. 72971-72980 ◽  
Author(s):  
Zenghui Yang ◽  
Qihua Wang ◽  
Yongkang Bai ◽  
Tingmei Wang

Shape memory polyimide/silica composite films show AO-resistant performance, good thermal stability and mechanical properties.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


2013 ◽  
Vol 829 ◽  
pp. 62-66 ◽  
Author(s):  
Alireza Fallahi ◽  
Hossein Hosseini-Toudeshky ◽  
Seyed Mahmoud Ghalehbandi

It is the objective of this study to investigate the effect of ECAP processing and heat treatment on the mechanical properties of the UFG 7075 alloy. Also the effect of post ECAP heat treatment is investigated. The alloy is processed by ECAP after annealing as well as solution treatment to produce an UFG structure. Furthermore mechanical properties and their variations during annealing and aging are investigated. The hardness of the pre-ECAP annealed and the pre-ECAP solutionised 7075 aluminum alloy has increased significantly compared with that of the CG sample. Also hardness of ECAPed specimen has not experienced significant changes in post-ECAP heat treatment and indicated that the alloy had approximately good thermal stability.


RSC Advances ◽  
2016 ◽  
Vol 6 (90) ◽  
pp. 87013-87020 ◽  
Author(s):  
Kaiju Luo ◽  
Yan Wang ◽  
Junrong Yu ◽  
Jing Zhu ◽  
Zuming Hu

Aromatic furanic polyamides with relatively high molecular weight were synthesized, and good thermal stability and mechanical properties were demonstrated.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6692
Author(s):  
Xianhui Zhao ◽  
Haoyu Wang ◽  
Linlin Jiang ◽  
Lingchao Meng ◽  
Boyu Zhou ◽  
...  

The long-term property development of fly ash (FA)-based geopolymer (FA−GEO) incorporating industrial solid waste carbide slag (CS) for up to 360 d is still unclear. The objective of this study was to investigate the fresh, physical, and mechanical properties and microstructures of FA−GEO composites with CS and to evaluate the effects of CS when the composites were cured for 360 d. FA−GEO composites with CS were manufactured using FA (as an aluminosilicate precursor), CS (as a calcium additive), NaOH solution (as an alkali activator), and standard sand (as a fine aggregate). The fresh property and long-term physical properties were measured, including fluidity, bulk density, porosity, and drying shrinkage. The flexural and compressive strengths at 60 d and 360 d were tested. Furthermore, the microstructures and gel products were characterized by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS). The results show that the additional 20.0% CS reduces the fluidity and increases the conductivity of FA−GEO composites. Bulk densities were decreased, porosities were increased, and drying shrinkages were decreased as the CS content was increased from 0.0% to 20.0% at 360 d. Room temperature is a better curing condition to obtain a higher long-term mechanical strength. The addition of 20.0% CS is more beneficial to the improvement of long-term flexural strength and toughness at room temperature. The gel products in CS−FA−GEO with 20.0% CS are mainly determined as the mixtures of sodium aluminosilicate (N−A−S−H) gel and calcium silicate hydration (C−S−H) gel, besides the surficial pan-alkali. The research results provide an experimental basis for the reuse of CS in various scenarios.


2012 ◽  
Vol 512-515 ◽  
pp. 1018-1021
Author(s):  
Xu Fei Zhu ◽  
Long Fei Jiang ◽  
Wei Xing Qi ◽  
Chao Lu ◽  
Ye Song

To overcome the risk of electrolyte leakage and the shortcoming of higher impedance at high frequencies for the conventional aluminum electrolytic capacitor impregnated with electrolyte solutions, solid aluminum electrolytic capacitor employing conducting polyaniline (PANI) as a counter electrode was developed. The as-fabricated solid capacitors have very low impedances at high frequencies and excellent thermal stability. The superior performances can be ascribed to high conductivity and good thermal stability of the camphorsulfonic acid (CSA)-dodecylbenzenesulfonic acid (DBSA) co-doped PANI.


2018 ◽  
Vol 2 (7) ◽  
pp. 1374-1382 ◽  
Author(s):  
Pengyu Chen ◽  
Huanyu Zhang ◽  
Mengmeng Han ◽  
Ziyao Cheng ◽  
Qian Peng ◽  
...  

A Janus molecule J2 containing five FTC moieties exhibited good thermal stability, excellent electro-optic performance and good temporal stability.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3140 ◽  
Author(s):  
Zhun Cheng ◽  
Xiaoqiang Li ◽  
Minai Zhang ◽  
Shengguan Qu ◽  
Huiyun Li

In this study, K417G Ni-based superalloy with a 20-mm gap was successfully bonded at 1200 °C using powder metallurgy with a powder mixture. The results indicated that the microstructure and mechanical properties of the as-bonded alloy were highly dependent on the brazing time (15–45 min), mainly due to the precipitation and distribution characteristics of M3B2 boride particles. Specifically, alloy brazed for 30 min exhibited desirable mechanical properties, such as a high tensile ultimate strength of 971 MPa and an elongation at fracture of 6.5% at room temperature, exceeding the balance value (935 MPa) of the base metal. The excellent strength and plasticity were mainly due to coherent strengthening and dispersion strengthening of the in situ spherical and equiaxed M3B2 boride particles in the γ + γ′ matrix. In addition, the disappearance of dendrites and the homogenization of the microstructure are other factors that cannot be excluded. This powder metallurgy technique, which can avoid the eutectic transformation of traditional brazing, provides a new effective method for wide-gap repair of alloy materials.


e-Polymers ◽  
2010 ◽  
Vol 10 (1) ◽  
Author(s):  
M. Soccio ◽  
N. Lotti ◽  
L. Finelli ◽  
A. Munari

AbstractSeveral novel ether or thioether linkage containing aliphatic polyesters and poly(alkylene dicarboxylate)s were synthesized for comparison and characterized in terms of chemical structure and molecular weight. The thermal behavior was examined by thermogravimetric analysis and differential scanning calorimetry. All the polymers showed a good thermal stability, even though lower for the ether or thioether linkage-containing polyesters. The decrement of the thermal stability appears to be more relevant in the case of the presence of sulphur atoms. At room temperature the samples appeared semicrystalline, except PTTDG and PDEDG, which were viscous oils; the effect of the introduction of ether or thioether group was an increment of the Tgvalue, a decrement of the melting temperature and a significant decrease of the crystallization rate. The entity of the variations was found to be affected by the kind of group introduced, and the trend observed can be explained on the basis of atom electronegativity and dimensions


2005 ◽  
Vol 101-102 ◽  
pp. 103-110 ◽  
Author(s):  
Yoritoshi Minamino ◽  
Yuichiro Koizumi ◽  
Nobuhiro Tsuji ◽  
Naoko Hirohata ◽  
Kiyoshi Mizuuchi ◽  
...  

Three kinds of bulk nanocrystalline Fe-24at%Al-Xat%C (X=1,2,4) alloy were produced from Fe and Al powders with addition of methanol by MA with subsequent SPS at 1273K under 64MPa. Their microstructure and mechanical properties were investigated. The compacts have the relative densities of 99.97% (1at%C) to 99.6% (4at%C). The structure of compacts with 1at%C is composed of Fe3Al grains of 1.5µm in diameter and nano k-carbides (Fe3AlC0.5) precipitates, while those of compacts with 2 and 4at%C are composed of nanocrystalline Fe3Al of about 80nm in diameter, nano k-carbides and a-grains of about 1µm in diameter. These structures have the good thermal stability, maintaining the nanostructure even at 973K. The mechanical properties of these compacts were measured by compression tests at R.T. to 973K. The compacts with 1at%C and 2at%C of this work perform the superior mechanical properties (e.g. yield strength of 2.15GPa and rupture strain of 0.14 for compact with 2at%C at R.T.) when compared with the ordinary Fe3Al casting (e.g. 380MPa and 0.12). They also exhibit no environmental embrittlement, which is one of fatal problems for the ordinary Fe3Al mateials.


Sign in / Sign up

Export Citation Format

Share Document