Microstructure and Mechanical Properties of a Cold-Rolled Medium Manganese Steel with Delta Ferrite

2015 ◽  
Vol 816 ◽  
pp. 750-754 ◽  
Author(s):  
Zhi Ping Hu ◽  
Yun Bo Xu ◽  
Xiao Dong Tan ◽  
Xiao Long Yang ◽  
Yong Mei Yu

In this paper, a quenching and tempering process was applied to the cold-rolled medium Mn steel with the delta ferrite (Fe-0.18C-6.4Mn-2.8Al). Microstructure characterization was carried out by means of optical microscope, scanning electron microscope (SEM) equipped with electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). Mechanical properties tests were carried out by uniaxial tension tests. The microstructure characterization results revealed that the steel possessed a complex microstructure composed of three phases (austenite, martensite and delta ferrite). The volume fractions of austenite before and after a deformation were determined by X-ray diffraction (XRD). The XRD results indicated that the amount of austenite reached up to 20 vol.% and the TRIP effect occurred quite apparently. The mechanical property results showed that the steel possessed adequate ultimate tensile strength of 800MPa and excellent elongation of 25%. The outstanding combination of strength and ductility with the product of strength and elongation (PSE) reaching up to over 20GPa% indicates that the steel has a bright application prospect.

2014 ◽  
Vol 788 ◽  
pp. 267-271
Author(s):  
Xiao Dong Tan ◽  
Zi Quan Liu ◽  
Yun Bo Xu ◽  
Xiao Long Yang ◽  
Di Wu

In the present work, a study has been made of the hot-rolling process for a transformation induced plasticity (TRIP) steel Fe-0.12C-0.5Si-1.4Mn-0.5Cr (wt%). The volume fractions of retained austenite before and after a deformation were determined by X-ray diffraction (XRD). The microstructure was characterized by optical microscope, scanning electron microscope (SEM) equipped with electron backscattered diffraction (EBSD) and transmission electron microscope (TEM). A uniaxial tension text indicated that the steel possesses ultimate tensile strength of 748 MPa with yield ratio of 0.7 and elongation of 20%. The steel with the volume fraction of retained austenite of 12.5 % exhibits significant TRIP effect.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Przemysław Snopiński ◽  
Mariusz Król ◽  
Marek Pagáč ◽  
Jana Petrů ◽  
Jiří Hajnyš ◽  
...  

AbstractThis study investigated the impact of the equal channel angular pressing (ECAP) combined with heat treatments on the microstructure and mechanical properties of AlSi10Mg alloys fabricated via selective laser melting (SLM) and gravity casting. Special attention was directed towards determining the effect of post-fabrication heat treatments on the microstructural evolution of AlSi10Mg alloy fabricated using two different routes. Three initial alloy conditions were considered prior to ECAP deformation: (1) as-cast in solution treated (T4) condition, (2) SLM in T4 condition, (3) SLM subjected to low-temperature annealing. Light microscopy, transmission electron microscopy, X-ray diffraction line broadening analysis, and electron backscattered diffraction analysis were used to characterize the microstructures before and after ECAP. The results indicated that SLM followed by low-temperature annealing led to superior mechanical properties, relative to the two other conditions. Microscopic analyses revealed that the partial-cellular structure contributed to strong work hardening. This behavior enhanced the material’s strength because of the enhanced accumulation of geometrically necessary dislocations during ECAP deformation.


Metals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 795 ◽  
Author(s):  
Cheng Zhang ◽  
Shouxin Wang ◽  
Hanxue Qiao ◽  
Zejun Chen ◽  
Taiqian Mo ◽  
...  

In this study, the traditional hot rolling to fabricate Al/Ti laminated metal composites (LMCs) was improved by using a pre-rolling diffusion process. The effect of the pre-rolling diffusion on microstructure and mechanical properties of Al/Ti LMCs were investigated by various methods, such as optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS) and tensile tests. The results show that, with increasing diffusion temperature, the thickness in diffusion layer was increased and the mechanical properties of LMCs were improved obviously, which was attributed to the optimized interfacial structure after diffusion process. In addition, the formation of TiAl3 intermetallic compounds (IMCs) was detected in the bonding interface, which played an important role in improving the mechanical properties for Al/Ti LMCs. The predicted results of stress-strain curves from rule of mixture (ROM) indicated that, there existed an extra interfacial strengthening in Al/Ti LMCs beside the mechanical properties provided by the contribution of constituent layers. The pre-rolling diffusion process is effective for the optimization of interfacial structure and improvement of mechanical properties in Al/Ti LMCs.


Fibers ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 52 ◽  
Author(s):  
Oliviero Baietto ◽  
Mariangela Diano ◽  
Giovanna Zanetti ◽  
Paola Marini

The main objective of this work is the evaluation of the morphology change in tremolite particles before and after a grinding process. The crushing action simulates anthropic alteration of the rock, such as excavation in rocks containing tremolite during a tunneling operation. The crystallization habit of these amphibolic minerals can exert hazardous effects on humans. The investigated amphibolic minerals are four tremolite samples, from the Piedmont and Aosta Valley regions, with different crystallization habits. The habits can be described as asbestiform (fibrous) for longer and thinner fibers and non-asbestiform (prismatic) for prismatic fragments, also known as “cleavage” fragments. In order to identify the morphological variation before and after the grinding, both a phase contrast optical microscope (PCOM) and a scanning electron microscope (SEM) were used. The identification procedure for fibrous and prismatic elements is related to a dimensional parameter (length–diameter ratio) defined by the Health and Safety Executive. The results highlight how mineral comminution leads to a rise of prismatic fragments and, therefore, to a potentially safer situation for worker and inhabitants.


Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1267 ◽  
Author(s):  
Lili Liu ◽  
Huade Zheng ◽  
Chunlin Deng

To improve biocompatibility and mechanical compatibility, post-treatment is necessary for porous scaffolds of bone tissue engineering. Hot isostatic pressing (HIP) is introduced into post-treatment of metal implants to enhance their mechanical properties by eliminating residual stress and pores. Additionally, oxide film formed on the material surface can be contributed to improve its biocompatibility. Ti6Al4V porous scaffolds fabricated by laser-powder bed fusion (L-PBF) process is studied in this paper, their mechanical properties are measured by pressure test, and the macroscopic surface morphology and microstructure are observed by optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). After HIP treatment, an oxide layer of 0.8 μm thickness forms on the surface of Ti6Al4V porous scaffolds and the microstructure of Ti6Al4V transforms from α’ phase to α + β dual-phase, as expected. However, the pressure test results of Ti6Al4V porous scaffolds show a definitely different variation trend of mechanical properties from solid parts, unexpectedly. Concerning Ti6Al4V porous scaffolds, the compression stiffness and critical stress improves clearly using HIP treatment, and the fracture morphology shows obvious brittle fracture. Both the strengthening and brittleness transition of Ti6Al4V porous scaffolds result from the formation of an oxide layer and an oxygen atom diffusion layer. The critical stress of Ti6Al4V porous scaffolds can be calculated by fully considering these two strengthening layers. To obtain a porous scaffold with specific mechanical properties, the effect of post-treatment should be considered during structural design.


2010 ◽  
Vol 654-656 ◽  
pp. 66-69 ◽  
Author(s):  
Chuang Li ◽  
Xue Min Wang ◽  
Xin Lai He ◽  
Cheng Jia Shang ◽  
Yu He

The properties and precipitation behavior of Cu-bearing steels have been investigated. The optical microscope and transition electron microscope were employed to study the influence of interrupted cooling and quenching temperature on the precipitation behavior. Also, the properties of samples with different quench processes were tested. The results show that when the steel is interruptedly cooled and quenched from 650-700°C, with the quenching temperature increasing the volume fraction of martensite becomes larger and the hardness becomes higher. When the microstructure is ferrite the second-phase precipitates occurs and they are proved copper-rich particles. However there are no obvious precipitates in martensite. The copper-rich second phase forms by the way of inter-phase precipitation.


2014 ◽  
Vol 629 ◽  
pp. 456-460 ◽  
Author(s):  
S. Rasool Mohideen ◽  
Ahmad Zaidi Ahmad Mujahid ◽  
Abdullah Shohaimi ◽  
S. Ravi

Materials are subjected to low temperatures either intentionally as in the case of cryogenic fuels or non-intentionally as in the case of aerospace environment and are observed to undergo changes in their properties. Microstructural changes are the premier indications of changes in the properties of materials. This paper investigates the effect of cryogenic temperature on the microstructure of low alloy steel weldments. The weldments were subjected to liquid nitrogen temperature of 77K and the microstructures were analyzed using optical microscope and transmission electron Microscope. A distinct change in the microstructure was observed which would reason out the changes in the mechanical properties of weldments.


2011 ◽  
Vol 217-218 ◽  
pp. 812-818
Author(s):  
Hong Bin Wang ◽  
Sheng Li Li ◽  
Li Li ◽  
Peng Cheng Ma

The precipitation behaviors of hot rolling and cold rolled annealing steel plates strengthened complexly by titanium and molybdenum were studied in the paper. The microstructures and precipitate phases were analyzed using optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) with energy disperse spectroscopy (EDS). The results showed that the coarsening square TiN phase and the fine roundness (Ti,Mo)C phase were precipitated mostly in the hot rolled steel plate. As the finishing temperature decreased and coiling holding time increased, the quantity of fine precipitates increased. And also the fine round precipitates increased, dispersion expanded and shape of the phase being uniformed as the annealing temperature increased. Therefore, the strengthen effects can be improved effectively by a reasonable control toward titanium and molybdenum precipitation behaviors.


2017 ◽  
Author(s):  
Zhenglong Liang ◽  
Qi Zhang

A novel process which combines casting with forging during one process was proposed to improve mechanical properties and refine microstructure. The microstructure evolution of as-cast samples and forged samples were analyzed by optical microscope and scanning electron microscope (SEM). The tensile properties and micro-hardness were also measured. The results show that combination of casting and forging can improve microstructure and decrease porosity of casting samples, consequently contributing to a better fatigue performance. The ultimate tensile strength and elongation were increased after forging process, however, the yield strength and micro-hardness decreased.


Sign in / Sign up

Export Citation Format

Share Document