Thermophysical Properties of Molybdenum Copper Multilayer Composites for Thermal Management Applications

2015 ◽  
Vol 825-826 ◽  
pp. 297-304 ◽  
Author(s):  
Martin Seiss ◽  
Tobias Mrotzek ◽  
Norbert Dreer ◽  
Wolfram Knabl

The key properties of materials used for thermal management in electronics are thermal conductivity and the coefficient of thermal expansion. These properties can be tailored by stacking molybdenum and copper layers. Here, molybdenum copper multilayer composites with varying copper content, from 63 to 88 wt%, have been investigated. It is demonstrated, that thermal conductivity and coefficient of thermal expansion, can be adjusted by the copper content. Two flash methods for measuring the thermal conductivity are compared and the validity of the results is discussed since measurements on thin materials with strong anisotropy require a certain setup of the measurement device. For the studied compositions the thermal conductivity was determined to be between 220 to 270 W/m/K and the coefficient of thermal expansion between 6.1 to 11.5 ppm/K.

2013 ◽  
Vol 795 ◽  
pp. 237-240
Author(s):  
K. Azmi ◽  
M.N. Derman ◽  
Mohd Mustafa Al Bakri Abdullah

The demand for advanced thermal management materials such as silicon carbide reinforced copper matrix (Cu-SiCp) composites is increasing due to their high thermal conductivity and low CTE properties. However, the weak bonding between the copper matrix and the SiCp reinforcement degrades the thermophysical properties of the composites. In order to improve the bonding between the two constituents, the SiCp were copper coated (Cu-Coated) via electroless coating process. Based on the experimental results, the CTE values of the Cu-Coated Cu-SiCp composites were found significantly lower than those of the non-Coated Cu-SiCp composites. The CTEs of the Cu-Coated Cu-SiCp composites were in agreement with Kernels model which accounts for both the shear and isostatic stresses developed in the component phases.


2008 ◽  
Vol 59 ◽  
pp. 169-172 ◽  
Author(s):  
Thomas Schubert ◽  
T. Weißgärber ◽  
Bernd Kieback

The ideal thermal management material working as heat sink and heat spreader should have a high thermal conductivity combined with a reduced and tailorable thermal expansion. To meet these market demands copper composites reinforced with diamond particles were fabricated by a powder metallurgical method (powder mixing with subsequent pressure assisted consolidation). In order to design the interfacial behaviour between copper and the reinforcement different alloying elements, chromium or boron, were added to the copper matrix. The produced composites exhibit a thermal conductivity up to 700 W/mK combined with a coefficient of thermal expansion (CTE) of 7-8 x 10-6/K. The copper composites with good interfacial bonding show only small decrease in thermal conductivity and a relatively stable CTE after the thermal cycling test.


2010 ◽  
Vol 65 ◽  
pp. 100-105 ◽  
Author(s):  
Marcin Chmielewski ◽  
Katarzyna Pietrzak ◽  
Dariusz Kaliński ◽  
Agata Strojny

Heat transfer by conduction is involved in the use of heat sinks dissipitating heat from electronic devices. Effective transfer of heat requires using materials of high thermal conductivity. In addition, it requires appropriate values of thermal expansion, matched to the semiconductor materials, high purity of materials used and good contact between bonded elements across which heat transfer occurs. The conventional materials are not able to fulfil still raising and complex requirements. The solutions of this problem could be using the composites materials, where the combinations of different properties is possible to use. This study presents the technological tests and the analysis of correlation between processing parameters and the properties of copperaluminium nitride composites. Composite materials were obtained by mixing in planetary ball mill and then densified using the sintering under pressure or hot pressing method. The microstructure of obtained composite materials using optical microscopy and scanning electron microscopy were analyzed. Coefficient of thermal expansion (CTE) and thermal conductivity (TC) were investigated depending on the process conditions.


Author(s):  
P.J. Huang ◽  
J.J. Swab ◽  
P.J. Patel ◽  
W.S. Chu

Abstract The development of thermal barrier coatings (TBCs) for diesel engines has been driven by the potential improvements in engine power and fuel efficiency that TBCs represent. TBCs have been employed for many years to reduce corrosion of valves and pistons because of their high temperature durability and thermal insulative properties. There are research programs to improve TBCs wear resistance to allow for its use in tribologically intensive areas of the engine. This paper will present results from tribological tests of ceria stabilized zirconia (CeSZ). The CeSZ was applied by atmospheric plasma spray process. Various mechanical and thermal properties were measured including wear, coefficient of thermal expansion, thermal conductivity, and microhardness. The results show the potential use of CeSZ in wear sensitive applications in diesel applications. Keywords: Thermal Barrier Coating, Diesel Engine, Wear, Thermal Conductivity, and Thermal Expansion


Author(s):  
Austin A. Phoenix ◽  
Evan Wilson

The novel adaptive thermal metamaterial developed in this paper provides a unique thermal management capability that can address the needs of future spacecraft. While advances in metamaterials have provided the ability to generate materials with a broad range of material properties, relatively little advancement has been made in the development of adaptive metamaterials. This metamaterial concept enables the development of materials with a highly nonlinear thermal conductivity as a function of temperature. Through enabling active or passive control of the metamaterials bulk effective thermal conductivity, this metamaterial that can improve the spacecraft's thermal management systems performance. This variable thermal conductivity is achieved through induced contact that results in changes in the F path length and the conductive path area. The contact can be generated internally using thermal strain from shape memory alloys, bimetal springs, and mismatches in coefficient of thermal expansion (CTE) or it can be generated externally using applied mechanical loading. The metamaterial can actively control the temperature of an interface by dynamically changing the bulk thermal conductivity controlling the instantaneous heat flux through the metamaterial. The design of thermal stability regions (regions of constant thermal conductivity versus temperature) into the nonlinear thermal conductivity as a function of temperature can provide passive thermal control. While this concept can be used in a wide range of applications, this paper focuses on the development of a metamaterial that achieves highly nonlinear thermal conductivity as a function of temperature to enable passive thermal control of spacecraft systems on orbit.


Author(s):  
S. Ganguli ◽  
A. K. Roy ◽  
R. Wheeler

Carbon foam is recognized as having the greatest potential to replacement for metal fins in thermal management systems such as heat exchangers, space radiators, and thermal protection systems [1–5]. Carbon foam refers to a broad class of materials that include reticulated glassy, carbon and graphitic foams that are generally open-cell or mostly open-cell. They can be tailored to have low or high thermal conductivity with a low coefficient of thermal expansion and density. These foams have high modulus but low compression and tensile strength. Among the carbon foams, the graphitic foam offers superior thermal management properties such as high thermal conductivity. Graphitic foams are made of a network of spheroidal shell segments. Each cell has thin, stretched ligaments in the walls that are joined at the nodes or junctions. The parallel arrangement of graphene planes in the ligaments confers highly anisotropic properties to the walls of the graphitic foams. The graphene planes tend to be oriented with the plane of the ligaments but become disrupted at the junctions (nodes) of the walls. Since conduction is highest along parallel graphene planes, the thermal conductivity is highest in the plane of the ligaments or struts, and much lower in the direction transverse to the plane of these ligaments. In a previous study [6] extensive mechanical and thermal property characterization of carbon foams from Kopper Inc. (L1) and POCO Graphite, Inc. (P1) were reported. These foams were graphitic ones that are expected to have high thermal conductivity. Figure 1 shows sections of light microscopy images of the three foams of four foams. The most important thing to notice is that the images were not at the same magnification. The large cells in the GrafTech foam have an average diameter of only ∼100 μm but have a bimodal distribution cells with many small closed-cells few micrometers in diameter. Changes in density in the GrafTech foam was accompanied by a change in the large cells’ diameter — larger diameter giving greater porosity and lower density without changing the smaller cells’ sizes that filled the solid phase between the larger bubbles. The POCO foam has a fairly uniform size cell distribution of a few hundred micrometers. The Koppers’ foams show larger cells yet with the left (“L” precursor) having a uniform size while the right-hand (“D” precursor) is a less uniform and lower porosity.


Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5021
Author(s):  
Philipp Keuter ◽  
Anna L. Ravensburg ◽  
Marcus Hans ◽  
Soheil Karimi Aghda ◽  
Damian M. Holzapfel ◽  
...  

The HfV2–HfV2O7 composite is proposed as a material with potentially temperature-independent thermophysical properties due to the combination of anomalously increasing thermoelastic constants of HfV2 with the negative thermal expansion of HfV2O7. Based on literature data, the coexistence of both a near-zero temperature coefficient of elasticity and a coefficient of thermal expansion is suggested for a composite with a phase fraction of approximately 30 vol.% HfV2 and 70 vol.% HfV2O7. To produce HfV2–HfV2O7 composites, two synthesis pathways were investigated: (1) annealing of sputtered HfV2 films in air to form HfV2O7 oxide on the surface and (2) sputtering of HfV2O7/HfV2 bilayers. The high oxygen mobility in HfV2 is suggested to inhibit the formation of crystalline HfV2–HfV2O7 composites by annealing HfV2 in air due to oxygen-incorporation-induced amorphization of HfV2. Reducing the formation temperature of crystalline HfV2O7 from 550 °C, as obtained upon annealing, to 300 °C using reactive sputtering enables the synthesis of crystalline bilayered HfV2–HfV2O7.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 725 ◽  
Author(s):  
Nadeem Ahmad Sheikh ◽  
Dennis Ling Chuan Ching ◽  
Ilyas Khan

In the present era, nanofluids are one of the most important and hot issue for scientists, physicists, and mathematicians. Nanofluids have many important and updated characteristics compared to conventional fluids. The thermal conductivity, thermal expansion, and the heat transfer rate of conventional fluids are not up to the mark for industrial and experimental uses. To overcome these deficiencies, nanoparticles have been dispersed into base fluids to make them more efficient. The heat transfer characteristics through symmetry trapezoidal-corrugated channels can be enhanced using nanofluids. In the present article, a literature survey has been presented for different models of nanofluids and their solutions—particularly, exact solutions. The models for hybrid nanofluids were also mentioned in the present study. Furthermore, some important and most used models for the viscosity, density, coefficient of thermal expansion, coefficient of mass expansion, heat capacitance, electrical conductivity, and thermal conductivity are also presented in tabular form. Moreover, some future suggestions are also provided in this article.


1993 ◽  
Vol 8 (5) ◽  
pp. 1169-1173 ◽  
Author(s):  
William B. Johnson ◽  
B. Sonuparlak

Diamond particles are unique fillers for metal matrix composites because of their extremely high modulus, high thermal conductivity, and low coefficient of thermal expansion. Diamond reinforced aluminum metal matrix composites were prepared using a pressureless metal infiltration process. The diamond particulates are coated with SiC prior to infiltration to prevent the formation of Al4C3, which is a product of the reaction between aluminum and diamond. The measured thermal conductivity of these initial diamond/Al metal matrix composites is as high as 259 W/m-K. The effects of coating thickness on the physical properties of the diamond/Al metal matrix composite, including Young's modulus, 4-point bend strength, coefficient of thermal expansion, and thermal conductivity, are presented.


Sign in / Sign up

Export Citation Format

Share Document