UV-Light Absorption and Photocatalytic Properties of Zn-Doped CeO2 Nanopowders Prepared by Ultrasound Irradiation

2015 ◽  
Vol 827 ◽  
pp. 56-61 ◽  
Author(s):  
Aula Fitra Efendi ◽  
Iis Nurhasanah

Ceria (CeO2) nanopowders doped with various Zinc (Zn) compositions were synthesized from solution by irradiating ultrasound waves. Ultrasound waves were irradiated to aqueous/isopropanol solution of cerium nitrate and zinc nitrate mixtures. Aqueous solution of ammonium hydroxide was droped into that solution until pH becomes 10. Dried precipitates were calcinated at 100°C to form CeO2 nanopowders. X-ray Diffraction (XRD) analysis shows the CeO2 nanopowder possess fluorite cubic structure. Ultrasound irradiation resulted in nanometric powder of CeO2 with spherical in shape. The addition of Zn into CeO2 reduces the particle size and shows strong absorbance in the ultra–violet (UV) region. Moreover, the addition of 20 mol% Zn is inhibiting photocatalytic activity of CeO2 under sunlight irradiation. These results suggest that Zn-doped CeO2 is more promising for UV radiation protection with no presence photocatalytic activity.

2015 ◽  
Vol 35 ◽  
pp. 21-26 ◽  
Author(s):  
Susmita Das ◽  
Vimal Chandra Srivastava

Metal oxide nanocomposite (ZnO-CuO) was successfully synthesized by one step homogeneous coprecipitation method and further characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron micrograph (SEM), X-ray diffraction analysis (XRD) and UV-visible diffuse reflectance spectra. XRD analysis exhibited presence of pure copper oxide and zinc oxide within the nanocomposite. SEM analysis indicated that the ZnO-CuO nanocomposite was consisted of flower shaped ZnO along with leaf shaped CuO. Photocatalytic activity of nanocomposite was evaluated in terms of degradation of methylene blue (MB) dye solution under ultra-violet radiation. Results showed that the photocatalytic efficiency of ZnO-CuO nanocomposite was higher than its individual pure oxides (ZnO or CuO).


2017 ◽  
Vol 14 (4) ◽  
pp. 279-283 ◽  
Author(s):  
Juan Xie ◽  
Yongjing Hao ◽  
Meixia Li ◽  
Yiwei Lian ◽  
Li Bian

Purpose This paper aims to report a novel preparation method of titanium dioxide (TiO2)/zinc oxide (ZnO) composites with different mole ratios of TiO2:ZnO and their photocatalytic activity. Design/methodology/approach TiO2/ZnO composites are prepared by a facile route. X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM) and ultra-violet–visible diffuse reflectance spectra (UV-vis DRS) are used to characterize the products. Photocatalytic activity of the samples is evaluated by degradation of persistent organic pollutant pentachlorophenol under ultra-violet (UV) irradiation. Findings It is found that all the as-prepared TiO2/ZnO composites not only have good catalytic activity under UV light irradiation, but also have excellent circulation stability. The optimal mole ratio of TiO2:ZnO is 0.75:1. Originality/value This report presents a simple and rapid method for the preparation of TiO2/ZnO composites with excellent photocatalytic activity. Experimental results could provide useful reference for the treatment of chlorophenols in the future.


2021 ◽  
Vol 34 (1) ◽  
pp. 223-229
Author(s):  
Hosaholalu Balakrishna Uma ◽  
Malahalli S. Vijaya Kumar ◽  
Sannaiah Ananda

In present study, SnS and NiS/SnS nano-photocatalysts have been synthesized by simple electrochemical method and their photocatalytic activity and bacterial inactivation were investigated. The size, morphology, chemical composition and optical properties were investigated by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray analysis (EDAX) and optical absorption spectroscopy. The XRD analysis confirmed the crystalline SnS phase. The band gap estimated from Tauc’s plot was 2.9 eV for SnS and 2.7 eV for NiS/SnS nanoparticles shows that they are photoactive under UV light radiation. The photocatalytic activity of nanoparticles was studied by degradation of textile dye Indigo carmine under ultraviolet radiation and the photocatalytic decolourization of the dye follows the first order kinetics. The antibacterial susceptibility of SnS and NiS/SnS nanoparticles was evaluated by disc diffusion Kirby-Bauer method using Staphylococcus aureus and Escherichia coli.


2014 ◽  
Vol 14 (3) ◽  
pp. 209-218 ◽  
Author(s):  
Imelda Fajriati ◽  
Mudasir Mudasir ◽  
Endang Tri Wahyuni

The photocatalytic decolorization of methyl orange (MO) by TiO2-chitosan nanocomposite has been studied. This study was started by synthesizing TiO2-chitosan nanocomposites using sol-gel method with various concentrations of Titanium(IV) isopropoxide (TTIP) as the TiO2 precursor. The structure, surface morphology, thermal and optical property of TiO2-chitosan nanocomposite were characterized by X-ray diffraction (XRD), fourier transform infra red (FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and diffuse reflectance ultra violet (DRUV) spectroscopy. The photocatalytic activity of TiO2-chitosan nanocomposite was evaluated by photocatalytic decolorization of methyl orange as a model pollutant. The results indicate that the particle size of TiO2 increases with increasing ofthe concentration of TTIP, in which TiO2 with smallest particle size exhibit the highest photocatalytic activity. The highest photocatalytic decolorization was obtained at 5 h of contact time, initial concentration of MO at 20 ppm and at solution pH of 4. Using these conditions, over 90% of MO was able to be decolorized using 0.02 g of TiO2-chitosan nanocomposite under UV light irradiation. The TiO2-chitosan nanocomposite could be reused, which meant that the TiO2-chitosan nanocomposites can be developed as an effective and economical photocatalyst to decolorize or treat dye in wastewater.


2015 ◽  
Vol 827 ◽  
pp. 19-24 ◽  
Author(s):  
Nur Afifah ◽  
Nadia Febiana Djaja ◽  
Rosari Saleh

In this study, the photocatalytic activity of pure Fe- doped ZnO and Fe- doped ZnO/Montmorillonite nanocomposite has been investigated for the degradation of malachite green under UV light irradiation. Both photocatalysts were synthesized using co-precipitation method and characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, Fourier-transform infrared absorption, and electron spin resonance. The results showed that the photocatalytic efficiency is better in the presence of montmorillonite compared to pure Fe- doped ZnO. To detect the possible reactive species involved in degradation of organic dyes control experiments with introducing scavengers into the solution of organic dyes were carried out. It is found that electron plays an important role in the degradation of malachite green.


2013 ◽  
Vol 448-453 ◽  
pp. 169-173
Author(s):  
Chun Yan Yan ◽  
Wen Tao Yi

Pure and F, Fe-codoped TiO2 were prepared by sol-hydrothermal process, in which titanium (IV) n-butoxide, Fe (NO3)2·6H2O and NH4F were used as precursors. And the samples were characterized by X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), and N2 adsorption-desorption method. The results showed that the F, Fe-codoped samples were principally single-phase anatase structures, and the particles possessed higher BET area than that of pure TiO2. The photocatalytic activity and reusability of the catalysts under UV light (365nm) was investigated with neutral red as the model compound. The results showed that F (2.0%), Fe (4.0%) codoped TiO2 had the highest photocatalytic activity among all as-prepared samples. The kinetic study showed that this photocatalytic process coincided with the Langmuir-Hinshelwood (L-H) pseudo first order reaction model.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
C. R. García ◽  
L. A. Diaz-Torres ◽  
J. Oliva ◽  
M. T. Romero ◽  
P. Salas

Blue phosphorescent strontium aluminosilicate powders were prepared by combustion synthesis route and a postannealing treatments at different temperatures. X-ray diffraction analysis showed that phosphors are composed of two main hexagonal phases: SrAl2O4and Sr3Al32O51. The morphology of the phosphors changed from micrograins (1000°C) to a mixture of bars and hexagons (1200°C) and finally to only hexagons (1300°C) as the annealing temperature is increased. Photoluminescence spectra showed a strong blue-green phosphorescent emission centered atλem=455 nm, which is associated with4f65d1→4f6  (8S7/2)transition of the Eu2+. The sample annealed at 1200°C presents the highest luminance value (40 Cd/m2) with CIE coordinates (0.1589, 0.1972). Also, the photocatalytic degradation of methylene blue (MB) under UV light (at 365 nm) was monitored. Samples annealed at 1000°C and 1300°C presented the highest percentage of degradation (32% and 38.5%, resp.) after 360 min. In the case of photocatalytic activity under solar irradiation, the samples annealed at 1000°C, 1150°C, and 1200°C produced total degradation of MB after only 300 min. Hence, the results obtained with solar photocatalysis suggest that our powders could be useful for water cleaning in water treatment plants.


2012 ◽  
Vol 573-574 ◽  
pp. 110-114 ◽  
Author(s):  
Jin Xia ◽  
Ri Ya Jin ◽  
Kai Xuan Guo ◽  
Si Jing Yang

Titanium dioxide powders were synthesized by ultrasonic-assisted hydrolysis reaction of titanium tetra-isopropoxide at the low-temperature. The samples were characterized by Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD). The photocatalytic activity of samples were investigated by the degradation of methyl orange under UV light radiation (6W, λ= 352nm) at room temperature. The results indicated that the products were mainly composed of high homogeneity anatase phases, and the methyl orange degradation rate can reach more than 90% under ultraviolet irradiation 180min. The photocatalytic activity of the samples prepared by ultrasonic method is higher than that of the samples prepared by conventional hydrolysis method.


2018 ◽  
Vol 762 ◽  
pp. 278-282
Author(s):  
Anzelms Zukuls ◽  
Gundars Mežinskis ◽  
Aigars Reinis ◽  
Ingus Skadins ◽  
Juta Kroica ◽  
...  

Prepared and heat-treated sol-gel ZnO-TiO2 coatings onto microscope glass slides were characterised by atomic force microscopy (AFM), scanning electron microscopy (SEM), as well as absorption spectra of light has been obtained. Thermally treated xerogels were characterised by X-ray diffraction (XRD). As well as their photocatalytic activity using methyl orange (MO) and observing the colour changes over the time in visible light (VIS) and ultra violet (UV) light has been determined. The influence of ZnO concentration on morphology, photocatalytic activity and antibacterial properties of coatings was analysed. The growth of S. epidermidis on the surface of the samples was inhibited due to photocatalytic properties of coatings.


2018 ◽  
Vol 762 ◽  
pp. 408-412
Author(s):  
Raivis Eglītis ◽  
Gundars Mežinskis

In this work two different hydrosols were used to impregnate a commercially available cotton fabric with anatase nanoparticles to give it photocatalytic activity. To increase the activity, different pre-treatment methods were applied. The nanoparticle size was determined using dynamic light scattering and x-ray diffraction and the fabrics were examined using scanning electron microscopy. Photocatalytic activity was measured using the degradation of methyl-orange while irradiating the samples with UV light. The synthesis method allowed to produce anatase with an average particle size of 32 to 37 nm depending on the synthesis method used.


Sign in / Sign up

Export Citation Format

Share Document