Analysis of the Environmental Impact of Foam Glass

2016 ◽  
Vol 847 ◽  
pp. 315-320
Author(s):  
Li Juan Zhang ◽  
Xian Zheng Gong ◽  
Ying Liang Tian ◽  
Zhi Hong Wang ◽  
Feng Gao ◽  
...  

Foam glass was widely used as a green energy saving material with good performances of light, thermal insulation and sound absorption. Using waste glass as raw material for foam glass production, can not only turn waste into treasure and reduce resource consumption, but also protect the environment. In this article, the foam glass which produced in Jiaxing, China was studied based on the method of life cycle assessment (LCA), and the resources, the energy consumption and the emission of pollutants at the same time were evaluated. The results show that the characterization value of GWP is the largest. The foaming stage is the main contributor which accounts for 79.7%. Similarly, the foaming stage is the major contributor to AP, POCP, EP and HTP .The characterization value of ADP is the smallest. The foaming stage and annealing stage is the main contributor to ADP which account for 43.0%, 49.7% respectively. It has been found that the foaming stage makes the most contribution to the environmental impact. AP, GWP, POCP and EP of the foaming stage are extremely prominent compared to other stages. The authors used the methods of equal weight coefficient and AHP to weight the single indicator. The results show that the environment impact caused by the foaming stage is the largest, then grinding stage and cutting stage follow behind. The environment impact caused by the transportation stage is the smallest.

2019 ◽  
Vol 974 ◽  
pp. 464-470 ◽  
Author(s):  
S.V. Fedosov ◽  
M.O. Bakanov ◽  
S.N. Nikishov

The process of the raw materials mixture heat treatment in the foam glass production is of great importance in the formation of the finished product thermal characteristics. Selection of optimal temperature regimes at the stages when the process of glass particles melting is activated and thermal decomposition of the gasifier occurs is of particular importance. Otherwise, a situation when the gasifier has decomposed by mass on the layers close to the material surface at that the reaction has not been initiated at the raw materials mixture center may emerge. The problem can be solved by the uniform heating throughout the raw materials mixture entire volume. The fact that excessive heating can entail additional financial costs for manufacturers’ energy resources and as a result the cost of the material can be increased and affect its competitiveness among thermal insulation materials should be taken into account. A method for calculating temperature fields allowing to simulate the thermophysical heating process in the center of the material under study on the basis of its surface temperature indicators has been presented in the paper. Such an approach may make calculation of the rational time intervals for the raw material mixture heat treatment prior to the foaming stages and partially optimization of the production process possible.


2018 ◽  
Vol 242 ◽  
pp. 01016 ◽  
Author(s):  
Elena A. Yatsenko ◽  
Boris M. Goltsman ◽  
Anna V. Ryabova ◽  
Victoria A. Smoliy

Modern trends in the development of Russian oil and gas infrastructure are examined. The important role of the Far East in the transportation and export of oil is revealed. The main threats in the operation of pipelines are described. The integrated protection technology of pipeline surfaces is proposed. The structure and properties of local silicate raw material – diatomite – are studied. The technology of obtaining glass enamel coating is designed to protect the internal surface of the pipe. The phase composition, microstructure and properties of the coating are compared with analogues. The technology of foam glass production is designed to protect the external surface of the pipe. The foaming processes are studied; the properties and structure of the material are examined. The optimum ratio of raw materials is revealed. Recommendations on the application of the developed technology for integrated pipeline protection are given.


2016 ◽  
Vol 847 ◽  
pp. 374-380 ◽  
Author(s):  
Miao Miao Fan ◽  
Shu Ping Wang ◽  
Zhi Hong Wang ◽  
Yu Liu

The energy consumption due to heat loss from exterior windows plays an important part in that of the whole building. Therefore, the environmental impact of exterior windows couldn’t be neglected. In this study, the energy consumption and environmental impact were quantified and analyzed based on life cycle assessment methodology. The results showed that both energy consumption and environmental impact of aluminum alloy windows and wood-plastic (WPC) windows mainly occurred at the production stage of aluminum alloy profile and flat glass respectively. At the stage of aluminum alloy profile production, the energy consumption and environment impact were 73.06% and 86% of whole life cycle, and for WPC windows they were 32.95% and 48% at the stage of flat glass production. In addition, the energy consumption and comprehensive environmental impact of aluminum alloy windows during the whole life cycle were 1.26 and 4.59 times more than that of WPC windows.


2021 ◽  
pp. 18-27
Author(s):  
M.V. Abrahamyan ◽  
B.V. Movsisyan ◽  
R.A. Avetyan ◽  
G.H. Torosyan

In recent decades, materials with high thermal resistance, refractory, non-toxic, with high mechanical characteristics, durable, affordable easy-to-install thermal insulation materials are of great interest. Durability of available thermal insulating materials, for example cotton insulators is from 10 to 20 years, foam is from 7 to 10 years. During burning process of foam plastics, high-toxic material called phosgene is released. At the same time, fungus forms during the process, and it has adhesion incompatibility with cement. Mineral wool decomposes over time, turning into powder, and the installation of external thermal insulation materials in buildings requires surface finishing to protect it from direct weathering, which incurs additional costs. Recently, composite glasses, glass-crystalline materials synthesized from slag-ash wastes of rocks are in great demand. The goal of this research is to study coal and solid waste of coal pyrolysis as a raw material for the foam glass production. In this work, the chemical, phase and mineralogical composition of coal from the Magavuz deposit in the Republic of Artsakh and solid residues of its catalytic pyrolysis have been studied by the modern methods of analysis. Based on the results, a heat-insulating material has been developed, in which pyrolysis waste also plays the role of a gas generator. The selected heat treatment mode ensures the production of heat-insulating foam with high porosity, uniformly distributed in the volume, with sufficient mechanical properties.


2018 ◽  
Vol 174 ◽  
pp. 01006 ◽  
Author(s):  
Břetislav Teplý ◽  
Tomáš Vymazal ◽  
Pavla Rovnaníková

Efficient sustainability management requires the use of tools which allow material, technological and construction variants to be quantified, measured or compared. These tools can be used as a powerful marketing aid and as support for the transition to “circular economy”. Life Cycle Assessment (LCA) procedures are also used, aside from other approaches. LCA is a method that evaluates the life cycle of a structure from the point of view of its impact on the environment. Consideration is given also to energy and raw material costs, as well as to environmental impact throughout the life cycle - e.g. due to emissions. The paper focuses on the quantification of sustainability connected with the use of various types of concrete with regard to their resistance to degradation. Sustainability coefficients are determined using information regarding service life and "eco-costs". The aim is to propose a suitable methodology which can simplify decision-making in the design and choice of concrete mixes from a wider perspective, i.e. not only with regard to load-bearing capacity or durability.


2016 ◽  
Vol 881 ◽  
pp. 383-386 ◽  
Author(s):  
Raimundo J.S. Paranhos ◽  
Wilson Acchar ◽  
Vamberto Monteiro Silva

This study evaluated the potential use of Sugarcane Bagasse Ashes (SBA) as a flux, replacing phyllite for the production of enamelled porcelain tile. The raw materials of the standard mass components and the SBA residue were characterized by testing by XRF, XRD, AG, DTA and TGA. Test samples were fabricated, assembled in lots of 3 units and sintered at temperatures of 1150 ° C to 1210 ° C. The results of the physical properties, mechanical properties and SEM of the sintered samples, showed that the formulation, G4 - in which applied 10% of SBA replacing phyllite, sintering temperature 1210 ° C showed better performance as the previously mentioned properties due to the formation of mullite crystals, meeting the prerequisites of standards for enamelled porcelain tile, while reducing the environmental impact and the cost of production.


2018 ◽  
Vol 931 ◽  
pp. 628-633 ◽  
Author(s):  
Sergey V. Fedosov ◽  
Maxim O. Bakanov ◽  
Sergey N. Nikishov

The work considers mathematical models describing thermal processes in the framework of thermal processing of raw material mixture for cellular glass sponging. It is shown that the existing models do not completely reflect the physical processes occurring in the technology of cellular glass production. It is noted that kinetics of cell formation in cellular glass is a promising trend for improving the cellular glass technology.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 819
Author(s):  
Pura Alfonso ◽  
Oriol Tomasa ◽  
Luis Miguel Domenech ◽  
Maite Garcia-Valles ◽  
Salvador Martinez ◽  
...  

Tailings from the Osor fluorite mines release large amounts of potentially toxic elements into the environment. This work is a proposal to remove these waste materials and use them as a raw material in the manufacture of glass. The chemical composition of the tailings was determined by X-ray fluorescence and the mineralogy by X-ray diffraction. Waste materials have SiO2, Al2O3 and CaO contents suitable for a glass production, but Na as NaCO3 has to be added. Two glass formulations, with 80–90% of the residue and 10–20% Na2CO3, have been produced. The crystallization temperatures, obtained by differential thermal analysis, were 875 and 901 °C, and the melting temperatures were 1220 and 1215 °C for the G80-20 and G90-10 glasses, respectively. The transition temperatures of glass were 637 and 628 °C. The crystalline phases formed in the thermal treatment to produce devitrification were nepheline, plagioclase and diopside in the G80-20 glass, and plagioclase and akermanite-gehlenite in the G90-10 glass. The temperatures for the fixed viscosity points, the working temperatures and the coefficient of expansion were obtained. The chemical stability of the glass was tested and results indicate that the potentially toxic elements of the tailings were incorporated into the glass structure.


2000 ◽  
Vol 32 (5) ◽  
pp. 817-832 ◽  
Author(s):  
Francis M Vanek

The author presents a methodology which is used first to model a product-manufacturing-and-distribution system, and then to predict the resulting changes in environmental impact from changes either in taxation or in costs of inputs. A case study of the paper sector in the eastern and central United States is developed, derived from the 1993 US Commodity Flow Survey. From an analysis of five scenarios, two central findings arise: (1) the model is found to be unresponsive to even large changes in transport taxation, so an environmental policy which considers both transportation and production aspects at the same time is favored, and (2) fluctuations in raw-material costs can have an influence on environmental impact as great as or greater than that of changes in taxation levels.


Author(s):  
Alma Delia Delia Román Gutiérrez ◽  
Juan Hernandez Avila ◽  
Antonia Karina Vargas M. ◽  
Eduardo Cerecedo Saenz ◽  
Eleazar Salinas-Rodríguez

Usually in the manufacture of beer by fermentation of barley, in both industrialized and developing countries significant amounts of organic solid waste are produced from barley straw. These possibly have an impact on the carbon footprint with an effect on global warming. According to this, it is important to reduce environmental impact of these solid residues, and an adequate way is the recycling using them as raw material for the elaboration of handmade paper. Therefore, it is required to manage this type of waste by analyzing the environmental impact, and thus be able to identify sustainable practices for the treatment of this food waste, evaluating its life cycle, which is a useful methodology to estimate said environmental impacts. It is because of this work shows the main results obtained using the life cycle analysis (LCA) methodology, to evaluate the possible environmental impacts during the waste treatment of a brewery located in the state of Hidalgo, Mexico. The residues evaluated were barley straw, malt residues and spent grain, and at the end, barley straw was selected to determine in detail its environmental impact and its reuse, the sheets analyzed presented a grammage that varies from 66 g/m2 and 143 g/m2, resistance to burst was 117 to 145 kpa, with a crystallinity of 34.4% to 37.1%.


Sign in / Sign up

Export Citation Format

Share Document