Experiments and CFD Predictions of Particles Velocity and Trajectory in Flow with Non-Newtonian Fluid through a Partially Obstructed Duct

2017 ◽  
Vol 899 ◽  
pp. 83-88 ◽  
Author(s):  
Isabele Cristina Bicalho ◽  
Dyovani Bruno Lima dos Santos ◽  
Carlos Henrique Ataíde ◽  
Claudio Roberto Duarte

Dynamic of particles in annular fluid flow is a very relevant subject for many industrial applications, especially for the oil and gas industry. Successful drilling is, to a large extent, dependent upon the ability of the drilling fluid to clean the hole by conveying the cuttings to the surface. The aim of this work was to evaluate experimentally and through numerical simulations, the helical path and the axial mean velocity developed by glass beads with diameter of 2.7 mm flowing with a non-Newtonian fluid through a partially obstructed annulus. Experimental data are reported for flow of 1 m3/h of an aqueous solution with 0.5% Xanthan gum through concentric annulus with partial obstruction of 6 mm and a 183 rpm rotation of the inner cylinder. Techniques of computational fluid dynamics (CFD) were applied to obtain detailed information about the flow field, allowing to estimate the radial position of launching of particles in the range of 35.5 mm to 39.1 mm. Comparisons between numerical calculations and the flow data indicated, in general, a very good agreement.

Author(s):  
Muhammad Awais Ashfaq Alvi ◽  
Mesfin Belayneh ◽  
Arild Saasen ◽  
Kjell Kåre Fjelde ◽  
Bernt S. Aadnøy

In recent years, the application of nanomaterial has been attracting the oil and gas industry. Nanomaterials research results show an improving performance of cement, drilling fluid and enhanced oil recovery. In this paper, the effect of multi-walled carbon nanotube (MWCNT) and MWCNT functionalized with ligands–OH and - COOH nanoparticles on laboratory drilling fluids formulated from bentonite, KCL, Carboxymethyl cellulose (CMC) and xanthan gum (XG) was studied. The formulations and tests were performed at room temperature. The results show that addition of 0.0095wt.% of MWCNT, MWCNT-OH and MWCNT-COOH nanoparticles in CMC/bentonite system decreases the filtrate-loss by 8.6 %, 7.1 % and 17.9 % respectively. These particles also decreased the coefficient of friction by 34 %, 37 % and 33 % respectively. In xanthan gum drilling fluid, 0.019wt%. MWCNT reduced the friction coefficient by 38 %.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1950
Author(s):  
Monika Gajec ◽  
Ewa Kukulska-Zając ◽  
Anna Król

Significant amounts of produced water, spent drilling fluid, and drill cuttings, which differ in composition and characteristics in each drilling operation, are generated in the oil and gas industry. Moreover, the oil and gas industry faces many technological development challenges to guarantee a safe and clean environment and to meet strict environmental standards in the field of processing and disposal of drilling waste. Due to increasing application of nanomaterials in the oil and gas industry, drilling wastes may also contain nanometer-scale materials. It is therefore necessary to characterize drilling waste in terms of nanomaterial content and to optimize effective methods for their determination, including a key separation step. The purpose of this study is to select the appropriate method of separation and pre-concentration of silver nanoparticles (AgNPs) from drilling wastewater samples and to determine their size distribution along with the state of aggregation using single-particle inductively coupled plasma mass spectrometry (spICP-MS). Two AgNP separation methods were compared: centrifugation and cloud point extraction. The first known use of spICP-MS for drilling waste matrices following mentioned separation methods is presented.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


Author(s):  
E.A. Flik ◽  
◽  
Y.E. Kolodyazhnaya

The article assesses the environmental safety of drilling fluids that are currently widely used in the oil and gas industry. It shows active development of water-based drilling fluid systems using xanthan biopolymer.


2019 ◽  
Vol 20 (1) ◽  
pp. 248
Author(s):  
Nor Adzwa Binti Rosli ◽  
Wan Asma Ibrahim ◽  
Zulkafli Hassan ◽  
Azizul Helmi Bin Sofian

In this study, some approaches have been proposed to establish an alternative and option of brand-new compounds by using green sources that can minimize the environmental threat in the engineering application industry. Tannin, a chemical component extracted from plant origin, has the potential to bind with proteins and other polymers. The description of tannin can be amplified to cover a complete mass of constituents which give typical phenolic reactions, and hence, it has the properties to interact with the aqueous solution. The potential of tannin to associate allows its usability in the oil and gas industry. The aim of this review in this particular context will be emphasized the use of tannin in the implementation of drilling fluid, mercury removal, wastewater treatment, and corrosion inhibitor.


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2116 ◽  
Author(s):  
Michael Frank ◽  
Robin Kamenicky ◽  
Dimitris Drikakis ◽  
Lee Thomas ◽  
Hans Ledin ◽  
...  

An oil and gas separator is a device used in the petroleum industry to separate a fluid mixture into its gaseous and liquid phases. A computational fluid dynamics (CFD) study aiming to identify key design features for optimising the performance of the device, is presented. A multiphase turbulent model is employed to simulate the flow through the separator and identify flow patterns that can impinge on or improve its performance. To verify our assumptions, we consider three different geometries. Recommendations for the design of more cost- and energy-effective separators, are provided. The results are also relevant to broader oil and gas industry applications, as well as applications involving stratified flows through channels.


2014 ◽  
Vol 625 ◽  
pp. 526-529 ◽  
Author(s):  
Lim Symm Nee ◽  
Badrul Mohamed Jan ◽  
Brahim Si Ali ◽  
Ishenny Mohd Noor

It is an open secret that currently oil and gas industry is focusing on increasing hydrocarbon production through underbalanced drilling (UBD) and finding ways to ensure the drilling process is less harmful to the environment. Water-based biopolymer drilling fluids are preferred compared to oil based drilling fluids owing to the fact that it causes less pollution to the environment. This paper investigates the effects of varying concentrations of environmentally safe raw materials, namely glass bubbles, clay, xanthan gum and starch concentrations on the density of the formulated biopolymer drilling fluid to ensure that it is suitable for UBD. As material concentrations were varied, the density for each sample was measured at ambient temperature and pressure. Results showed that the final fluid densities are within acceptable values for UBD (6.78 to 6.86 lb/gal). It is concluded that the formulated water-based biopolymer drilling fluid is suitable to be used in UBD operation.


2018 ◽  
Vol 7 (1) ◽  
pp. 100
Author(s):  
Foster Gomado ◽  
Forson Kobina ◽  
Augustus Owusu Boadi ◽  
Yussif Moro Awelisah

The superb rheological features of bentonites makes them an excellent candidate in drilling operations. Its capacity of bentonite to swell and extend to a few times its unique volume gives it the gelling and viscosity controlling quality. The execution of clay or specifical bentonite as a great consistency controlling operator in drilling fluids largely depends on the great extent of its rheological conduct. Ghana as of late found oil and it has tossed a test to research to explore the utilization of local materials in the oil and gas operations. A rheological study was conducted on local clay samples from Ajumako, Saltpond and Winneba in the Central district of Ghana as a viscosifier in drilling muds. This will help to improve the local content of Ghana's oil and gas industry. Drilling muds were prepared from the samples in addition to a control mud using imported non-treated bentonite. The local clay samples were subjected rheological test where the flow behavior of the muds was determined by measuring the gel strength, plastic viscosity, and the yield point. The experimental values were compared to the API standards. It was revealed that the local clay had some potential features of bentonite and could be utilized as controlling operators in drilling fluids provided the clays are beneficiated to enhance their rheological properties. This novel tend to improve the local content in oil and gas industry in Ghana through the deployment of the local materials in oil and gas operations in the nation.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 117
Author(s):  
Christopher Tom Engler ◽  
Helmuth Sarmiento Klapper ◽  
Matthias Oechsner

Due to the challenging operational conditions occurring during drilling, e.g., in the oil and gas industry, the corrosion fatigue (CF) behavior of materials used in drillstring components needs to be well understood. The combination of cyclic mechanic loads and a corrosive environment can affect significantly the integrity of a material, which has to be taken into account when selecting and qualifying materials for drilling equipment. Nickel alloys such as the precipitation-hardenable alloy 718 (UNS N07718) are widely used in many industrial applications including subterranean drilling. In the present study, the fatigue and CF behavior of alloy 718 in three different metallurgical conditions was investigated. The CF behavior of the different conditions was determined using customized rotating bending machines enabling testing in a simulated drilling environment at 125 °C. Results have shown that the fatigue and CF strength of alloy 718 is affected by its microstructural particularities, for instance, the amount of strengthening phases and δ-phase.


2021 ◽  
Vol 11 (5) ◽  
pp. 2157-2178
Author(s):  
David Oluwasegun Afolayan ◽  
Adelana Rasak Adetunji ◽  
Azikiwe Peter Onwualu ◽  
Oghenerume Ogolo ◽  
Richard Kwasi Amankwah

AbstractSuccessful drilling operations are dependent on the properties of the drilling fluid used to drill wells. Barite is used as a weighting agent during the preparation of drilling fluid. Over the years, oil and gas industry in Nigeria has been depending mainly on imported barite for drilling operations, whereas the country has huge deposits of barite. There is the need to assess the properties of the locally sourced barite for their suitability in drilling fluid formulation. This study presents the local processing methods of barite and examines the crude and on-the-site processed barite’s physio-chemical properties. These parameters were compared with American Petroleum Institute and Department of Petroleum Resources standards. XRD results show that on-the-site beneficiated barite has 87.79% BaSO4, 6.66% silica, 0.03% total soluble salt, 1.39% Fe2O3, and 1.603% heavy metals. Chemical analysis indicated that the pH, moisture content, metallic content such as Ca, Pb, Zn, Mg, Cu, and Cd minerals, and extractable carbonates were within the standard specified for usage as a drilling fluid weighting agent. The analysed crude barite samples were basic, within the pH of 8.3 and 8.6. Locally processed barite has lower Fe, Pb, Cd, and Cu content compared to industrially accepted barite. The specific gravity increased from 4.02 ± 0.07 to 4.15 ± 0.13, and the hardness reduced potentially from 5 Mohr to 3.5 Mohr on the hardness scale. The amount of impurities was sufficiently low, and the specific gravity of the samples improved to meet the needs of any drilling operation and compare favourably with industrially accepted barite.


Sign in / Sign up

Export Citation Format

Share Document