Adsorption of Methylene Blue (MB) Dye in Wastewater by Electrospun Polysulfone (PSF)/Organo-Montmorillonite (O-MMT) Nanostructured Membrane

2018 ◽  
Vol 916 ◽  
pp. 120-124 ◽  
Author(s):  
Ruth R. Aquino ◽  
Marvin S. Tolentino ◽  
Bianca Mae Z. Crisogono ◽  
Sarah Katrina V. Salvacion

In this study, organo-montmorillonite was utilized as an additive for the fabrication of the nanostructured membrane via electrospinning process.The purpose of this study is to investigate the performance of 95% PSF and 5% O-MMT blend in terms of its adsorption capacity towards MB dye in wastewater and comparing it to pure PSF membranes. Pure PSF and 5% O-MMT blend were immersed in the simulated wastewater at different time intervals (1, 5, 12, 24 and 48 hours), and the change in MB dye concentration was observed by UV-Vis absorbance reading. To determine the mechanism of adsorption, the data obtained were subjected to pseudo-first order and pseudo-second order kinetic models, and were fitted to Langmuir, Freundlich and Temkin adsorption isotherms to determine the adsorption equilibrium data. The results show that the adsorption efficiency was improved by 5.32%.

2016 ◽  
Vol 16 (4) ◽  
pp. 992-1001 ◽  
Author(s):  
Jasmina Nikić ◽  
Jasmina Agbaba ◽  
Malcolm Watson ◽  
Snežana Maletić ◽  
Jelena Molnar Jazić ◽  
...  

A series of Fe–Mn binary oxides with different Fe:Mn ratios (1:1, 3:1, 6:1, 9:1) were synthesized to investigate the optimal Fe:Mn ratio for the removal of As(III) and As(V). Batch experiments were performed to determine the rate of adsorption and equilibrium isotherms. Adsorption kinetics were well described by the pseudo-second-order kinetic model for both As(III) and As(V). The adsorption equilibrium data fitted well to Langmuir and Freundlich isotherms. The maximum As(V) sorption capacity was observed at an Fe:Mn ratio of 6:1 (65.0 mg/g), whereas maximum As(III) uptake was at Fe:Mn ratio 3:1 (46.9 mg/g). Arsenic levels in real water samples were reduced from 37 μg/l to below the EU Water Framework Directive limit (10 μg/L) after treatment with Fe–Mn adsorbents.


2021 ◽  
Vol 55 (9-10) ◽  
pp. 1131-1142
Author(s):  
BENGÜ ERTAN ◽  

Stinging nettle was used as lignocellulosic adsorbent for the removal of cationic dye – malachite green (MG), and anionic dye – Congo red (CR), from aqueous solution, without any chemical pretreatment. The adsorption equilibrium data fitted well with the Langmuir model for the adsorption of both dyes, with the calculated maximum adsorption capacity of 270.27 mgg-1 and 172.14 mgg-1 for MG and CR, respectively. The adsorption process was controlled by the pseudo-second-order model in the adsorption of MG and by the pseudo-first-order model in the adsorption of CR. The thermodynamics modelling displayed that the process was spontaneous and endothermic. The π–π electron–donor interaction, hydrogen bonds and pore diffusion may also be effective, besides electrostatic interaction between the adsorbate and the adsorbent in the mechanism of MG and CR uptake.


2021 ◽  
Vol 47 (1) ◽  
pp. 95-103
Author(s):  
Ivone Vanessa Jurado Dávila ◽  
Júlia Viola Matzenbacher Hübner ◽  
Keila Guerra Pacheco Nunes ◽  
Liliana Amaral Féris

In this work, it was studied the caffeine removal through the adsorption on granular activated carbon (CAG). The influence of pH, contact time and CAG dosage were analyzed by batch experiments. Adsorption Kinetic was studied using the models of pseudo-first-order and pseudo-second-order. The adsorption equilibrium data was studied with Langmuir, Freundlich, and Redlich-Peterson isotherm models. The process thermodynamic also was studied. It was obtained 88 % of removal under the experimental conditions of natural pH, 60 min of adsorption and 8 g.L-1 of CAG. The kinetic model that showed the best results was the pseudo-secondorder and Langmuir was the isotherm model that best described the adsorption behavior. The thermodynamic parameters obtained showed a spontaneous, endothermic and reversible process. The desorption efficiency also was studied by regenerant solvents. The best results were obtained using a solvent combination of ethyl acetate, ethanol, and water (50:25:25), and it was obtained a caffeine removal of 57 %, achieving 70 % when a new solution is used in each regeneration step.


2011 ◽  
Vol 354-355 ◽  
pp. 33-36
Author(s):  
Jian Yun Li ◽  
Quan Xian Hua ◽  
Jun Ling Niu ◽  
Jian Wei Tang ◽  
Ke Xu

The adsorption of copper in aqueous solutions by steel slag was studied in batch adsorption experiments. The adsorption equilibrium data fitted best with Langmuir and Freundlich equations. The adsorption was preferential type. A comparison of the kinetics models on the apparent adsorption rate showed that the adsorption system was best described by the pseudo-second-order kinetics. The adsorption rate was controlled by both liquid film diffusion and intraparticle dispersion.


2021 ◽  
Author(s):  
BENSEDIRA Abderrahim ◽  
HADDAOUI Nacerddine ◽  
DOUFNOUNE Rachida ◽  
MEZIANE Ouahiba ◽  
N. S. Labidi

Abstract Conducting Polymeric composites have attracted great attention over the last years because of their potential uses in chemical, electronic and optical devices, and as catalysts as well as in adsorption processes. Chemical synthesis of polyaniline (PANI) and polyaniline-SiO2 composite and their adsorptive performance were reported in the present work. These materials were prepared and evaluated for their methylene blue (MB) dye adsorption characteristics from aqueous solution. Adsorption equilibrium kinetic and thermodynamic experiments of MB onto PANI and PANI/SiO2 were studied. The effects of initial dye concentration, contact time and temperature on the adsorption capacity of PANI/SiO2 for MB have been investigated. The pseudo-first order and pseudo-second order kinetic models were used to describe the kinetic data. It was found that adsorption kinetics followed the pseudo-second order at all of the studied temperatures. The Langmuir, Freundlich and Dubinin Raduschkevich adsorption models were used for the mathematical description and the fit obtained using the Dubinin Raduschkevich isotherm has a medium R2 value.


2011 ◽  
Vol 233-235 ◽  
pp. 1141-1145
Author(s):  
Si Fang Li ◽  
Qiang Chen ◽  
Miao Liu

The adsorption of dimethylformamide (DMF) by macroporous chitosan membranes using silica gel as porogen is studied. The morphology, porosity and DMF adsorption capacity of the macroporous chitosan membrane were measured. SEM photographs show the pores in the membrane dispersed uniformly. DMF adsorption capacity of the macroporous chitosan membranes reached 145 mg/g. Adsorption isotherm of DMF on the macroporous chitosan membranes was determined and correlated with Langmuir and Freundlich equations. The adsorption equilibrium data fitted well with Freundlich equation. The adsorption kinetics was found to follow the pseudo second-order kinetic model.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1294 ◽  
Author(s):  
Kegl ◽  
Košak ◽  
Lobnik ◽  
Ban

New magnetic stabilized and functionalized core@shell nanoparticles (NPs) were synthesized in a simple way and characterized in order to adsorb Tb3+ from aqueous solution with a very low Tb3+ concentration. For the fluorescence determination of adsorption efficiency and capacity, tiron monohydrate as a ligand was used. The obtained results confirm the potential of the synthesized magnetic γ-Fe2O3-NH4OH@SiO2 NPs, functionalized with (3-Aminopropyl) trimethoxysilane (APTMS), to be used for adsorption of Tb3+ from aqueous solution, with the possibility of its removal from aqueous solution via an external magnet. The endothermic and spontaneous adsorption follows a pseudo-second-order kinetic model, and the adsorption equilibrium data fit the Temkin isotherm well. The maximum adsorption efficiency from aqueous solution with a 2 × 10−6 M concentration of Tb3+ is over 90% at pH 7.


2012 ◽  
Vol 77 (3) ◽  
pp. 393-405 ◽  
Author(s):  
Zavvar Mousavi ◽  
Abdorrahman Hosseinifar ◽  
Vahdat Jahed

Polyacrylamide (PAA), as an adsorbent was investigated for the removal of Ni(II) and Cr(III) metal ions from their synthesized aqueous solutions. The different variables affecting the adsorption capacity of the adsorbent such as contact time, pH of the sorption medium, metal ions concentration and temperature of the solution were investigated on a batch sorption basis. The adsorption equilibrium data fitted best with the Langmuir isotherm model. The maximum adsorption capacities found to be 84.03 and 32.67 mg g-1 of the polyacrylamide for Cr(III) and Ni(II), respectively. Three kinetic models including the pseudo-first-order, pseudo-second-order and intraparticle diffusion equations were selected to follow the adsorption process. Kinetic parameters such as rate constants, equilibrium adsorption capacities and related correlation coefficients, for each kinetic model were calculated and discussed. It was indicated that the adsorption of both ions onto polyacrylamide could be described by the pseudo-second-order kinetic model. Different thermodynamic parameters such as ?H?, ?S? and ?G? have also been evaluated and it has been found that the sorption was feasible, spontaneous and exothermic.


2018 ◽  
Vol 8 (10) ◽  
pp. 1807 ◽  
Author(s):  
Sarai Ramos-Vargas ◽  
Ruth Alfaro-Cuevas-Villanueva ◽  
Rafael Huirache-Acuña ◽  
Raúl Cortés-Martínez

The contamination of groundwater by arsenic and fluoride is a major problem worldwide, causing diseases in the population that uses these waters for their consumption. Therefore, the removal of these types of pollutants from groundwater is a very important issue. In this work, the removal of arsenate and fluoride from aqueous solutions by using aluminum-modified guava seeds (Al-GSs) was evaluated. Batch-type adsorption experiments were carried out with aqueous solutions of As(V) and F− and Al-GSs. The kinetic and equilibrium parameters of adsorption were determined, as well as the effects of adsorbent dose and pH. The adsorbent was characterized by scanning electron microscopy and infrared spectroscopy in order to determine its morphology and the functional groups present in the material. The results showed that hydroxyl and carboxyl are the main groups involved in the adsorption of As(V) and F−. The fluoride adsorption kinetics indicate that the equilibrium time was reached at 150 min and it can be described by the Lagergren model, while for As(V) the equilibrium time was lower (120 min) and the kinetic data were fitted well to the pseudo-second-order model. The Langmuir-Freundlich model can describe the adsorption equilibrium data in all cases. The fluoride adsorption capacity by Al-GS was 0.3445 mg/g, and for As(V) it was 4 mg/g. It can be established that the removal of arsenates and fluoride in Al-GSs is due to chemisorption on a heterogeneous surface.


2016 ◽  
pp. 565-570
Author(s):  
Huang Qin ◽  
Zhu Si-ming ◽  
Zeng Di ◽  
Yu Shu-juan

Sugar beet pulp (SBP) was used as low value adsorbent for the removal of calcium from hard water. Batch experiments were conducted to determine the factors affecting adsorption of the process such as pH value and Ca concentration. The adsorption equilibrium of Ca2+ by the SBP is reached after 100min and a pseudo second-order kinetic model can describe the adsorption process. The initial concentrations of Ca varied from 927 to 1127mgCa2+/L. A dose of 30g/L sugar beet pulp was sufficient for the optimum removal of calcium. The overall uptake of Ca ions by sugar beet pulp has its maximum at pH=8. The adsorption equilibrium data fitted well with the Langmuir adsorption isotherm equation.


Sign in / Sign up

Export Citation Format

Share Document