Modification Effect of Nanometre Zirconia on Ca-PSZ Ceramics

2019 ◽  
Vol 953 ◽  
pp. 59-64
Author(s):  
Liang Zhao ◽  
Shuang Yao ◽  
Jing Du

The modified calcium oxide partially stabilized zirconia ceramics were fabricated using ZrO2 powder as raw materials, CaO as stabilizer, and nanometre zirconia as modification agent. The relationship between additive amount of nanometre zirconia and the performance of Ca-PSZ ceramics were researched via testing the physical properties, analyzing mineral phase composition, and observing microstructure of the samples. The results show that the introduction of nanometre zirconia powder has a significant effect on the physical properties of Ca-PSZ, with an addition of 8wt%, bulk density was up to 5.08 g/cm3, and the compressive strength reached 381 MPa. Compared with the unmodified Ca-PSZ sample, the porosity of the modified Ca-PSZ samples decreased by 40%, and the compressive strength increased by 70%. The introduction of nanometre zirconia has an inhibitory effect on the abnormal growth of zirconia grains and improves the densification of the Ca-PSZ ceramics. Through the formation of intragranular structure, nanometre zirconia can induce transgranular fracture and weaken crystalline fracture, thereby increasing the strength of the Ca-PSZ ceramics.

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Daming Zhang ◽  
Fangjin Sun ◽  
Tiantian Liu

Coal gangue-based geopolymer concrete is an environmentally friendly material made from coal gangue, solid waste from the coal mine. Compressive strength is one of the most important indexes for concretes. Different oxide contents of coal gangue will affect the compressive strength of the geopolymer concrete directly. However, there is little study on the relationship between oxide contents and compressive strength of the geopolymer concrete. Experiments are commonly used methods of determining the compressive strength of concretes, including geopolymer concrete, which is time-consuming and inefficient. Therefore, in the work here, a support vector machine and a modified cuckoo algorithm are utilized to predict the compressive strength of geopolymer concrete. An orthogonal factor is introduced to modify the traditional cuckoo algorithm to update new species and accelerate computation convergence. Then, the modified cuckoo algorithm is employed to optimize the parameters in the support vector machine model. Then, the compressive strength predictive model of coal gangue-based geopolymer concrete is established with oxide content of raw materials as the input and compressive strength as the output of the model. The compressive strength of coal gangue-based geopolymer concrete is predicted with different oxide contents in raw materials, and the effects of different oxide contents and oxide combinations on compressive strength are studied and analyzed. The results show that the support vector machine and the modified cuckoo algorithm are valid and accurate in predicting the compressive strength of geopolymer concrete. And, coal gangue geopolymer concrete compressive strength is significantly affected by oxide contents.


2016 ◽  
Vol 697 ◽  
pp. 591-594
Author(s):  
Shao Hua Wang ◽  
Cheng Ji Deng ◽  
Hong Xi Zhu ◽  
Wen Jie Yuan

The in situ nitrides bonded MgAl2O4-C refractories were prepared by using high quality fused spinel (MgAl2O4≥ 97%), natural flake graphite (C ≥ 96%) and silicon powder (Si ≥ 98%) as raw materials and the liquid calcium lignosulfonate with a concentration of 1.25 g/ml was used as binder (4 wt%). The effect of sintering temperatures on physical properties and phase compositions were investigated. The results show that β-sialon and α-Si3N4were formed in the samples sintered at 1400°C, 1450°C and 1500°C, and AlON and AlN were formed in the samples sintered at 1550°C. The sample that sintered at 1450°C exhibits the best bulk density and apparent porosity of 2.84 g/cm3 and 14.73%, respectively, and the highest compressive strength


Author(s):  
Malgorzata Daszkiewicz ◽  
Lara Maritan

Ceramics are by definition inorganic non-metallic materials, formed from a powder and by firing converted to a permanent solid mass. Firing is thus a sine qua non for the creation of a ceramic product. This chapter discusses the mineralogical changes and the changes in physical properties which occur in raw materials during the firing process. Experimental firing (in the laboratory and in the field) is a method used to examine the relationship between the properties of ceramic products and raw materials as well as firing conditions. Re-firing, as opposed to experimental firing, involves the firing of ancient ceramic fragments in the laboratory. This procedure enables ancient ceramics to be classified by the type of plastic raw material used in their manufacture and also provides an estimation of equivalent original firing temperature.


2011 ◽  
Vol 335-336 ◽  
pp. 455-459
Author(s):  
Wei Wu ◽  
Chao Zhang ◽  
Rong Jun Chen

With fixing proportion of two components of RPUF and changing content of different admixtures, this paper does experiments on material density, compressive strength and so on to research the influence of different content of admixtures on the engineering properties of RPUF and analyze the relationship between physical properties and mechanical properties of the materials.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (6) ◽  
pp. 24-28
Author(s):  
CORY JAY WILSON ◽  
BENJAMIN FRANK

TAPPI test T811 is the specified method to ascertain ECT relative to box manufacturer’s certification compliance of corrugated fiberboard under Rule 41/ Alternate Item 222. T811 test sample heights were derived from typical board constructions at the time of the test method’s initial development. New, smaller flute sizes have since been developed, and the use of lighter weight boards has become more common. The T811 test method includes sample specifications for typical A-flute, B-flute, and C-flute singlewall (and doublewall and triplewall) structures, but not for newer thinner E-flute or F-flute structures. This research explores the relationship of ECT sample height to measured compressive load, in an effort to determine valid E-flute and F-flute ECT sample heights for use with the T811 method. Through this process, it identifies challenges present in our use of current ECT test methods as a measure of intrinsic compressive strength for smaller flute structures. The data does not support the use of TAPPI T 811 for ECT measurement for E and F flute structures, and demonstrates inconsistencies with current height specifi-cations for some lightweight B flute.


2012 ◽  
Vol 4 (1) ◽  
pp. 1
Author(s):  
Djoko Purwanto

Timber Acacia mangium (Acacia mangium, Willd) for Furniture. The study aims to determine the mechanical and physical properties and the decorative value (color and fiber) wood of acacia mangium with using finishing materials. This type of finishing material used is ultran lasur natural dof ,ultran lasur classic teak, aqua politur clear dof, aqua politur akasia dan aqua politur cherry. After finishing the wood is stored for 3 months. Test parameters were observed, namely, physical and mechanical properties of wood, adhesion of finishing materials, color and appearance of the fiber, and timber dimensions expansion. The results showed that the mechanical physical properties of acacia wood qualified SNI. 01-0608-89 about the physical and mechanical properties of wood for furniture, air dry the moisture content from 13.78 to 14.89%, flexural strength from 509.25 to 680.50 kg/cm2, and compressive strength parallel to fiber 342.1 - 412.9 kg/cm2. Finishing the treatment process using five types of finishing materials can increase the decorative value (color and fiber) wood. Before finishing the process of acacia mangium wood has the appearance of colors and fibers and less attractive (scale scores 2-3), after finishing acacia wood fibers have the appearance of colors and interesting and very interesting (scale 4-5).Keywords: mangium wood, mechanical properties, decorative value, finishing, furniture.


2011 ◽  
Vol 65 (12) ◽  
pp. 1293-1297
Author(s):  
Keiko Hashiguchi ◽  
Takehiro Yoshimatsu ◽  
Masanori Kawashima

Alloy Digest ◽  
1995 ◽  
Vol 44 (12) ◽  

Abstract COLMONOY No. 83 PTA is a nickel-base hard surfacing alloy containing tungsten carbide. The application method is plasma transferred arc and the application is designed to protect extrusion screws. This datasheet provides information on composition, physical properties, microstructure, hardness, tensile properties, and compressive strength. It also includes information on wear resistance as well as machining and powder metal forms. Filing Code: Ni-493. Producer or source: Wall Colmonoy Corporation.


Alloy Digest ◽  
1954 ◽  
Vol 3 (8) ◽  

Abstract Federaloy F-1 is a copper tin-zinc bearing bronze whose strength suits it for applications where loads are heavy. It should be used only where lubrication is exceptionally good or motion is of a rocking nature. It is also a good gear bronze. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness, creep, and deformation. It also includes information on high temperature performance and corrosion resistance as well as casting, machining, and joining. Filing Code: Cu-19. Producer or source: Federal-Mogul Corporation.


Alloy Digest ◽  
1963 ◽  
Vol 12 (1) ◽  

Abstract Colmonoy No. 6 is a high-carbon, nickel-base alloy recommended for hard facing parts to resist wear, corrosion, heat and galling. This datasheet provides information on composition, physical properties, hardness, elasticity, and compressive strength. It also includes information on corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-78. Producer or source: Wall Colmonoy Corporation.


Sign in / Sign up

Export Citation Format

Share Document