Shear Texture Formation during High-Strain Torsion of Titanium Aluminides

2005 ◽  
Vol 105 ◽  
pp. 303-308 ◽  
Author(s):  
G.H. Cao ◽  
Burghardt Klöden ◽  
C.G. Oertel ◽  
Werner Skrotzki ◽  
U. Garbe ◽  
...  

Ti-47Al-4(Cr, Nb, Mn, B) samples with different initial grain structures and fibre textures were deformed in torsion at 1000 °C under hydrostatic pressure of 400 MPa in a Paterson type rock deformation machine at a maximum constant strain rate of 2*10-4 s-1. The microstructure was investigated by transmission electron microscopy (TEM). Local texture measurements as a function of shear strain were done with high-energy synchrotron radiation. During shearing due to dynamic recrystallization the initially lamellar structure breaks down into a fine-grained globular structure with a g grain size in the order of 5 µm. The shear texture developed consists of <110> and {110} inclined to the shear direction and shear plane, respectively. The microstructure and texture development is discussed.

2003 ◽  
Vol 35 (3-4) ◽  
pp. 163-173 ◽  
Author(s):  
W. Skrotzki ◽  
B. Klöden ◽  
R. Tamm ◽  
C.-G. Oertel ◽  
U. Garbe ◽  
...  

Diffraction with high-energy synchrotron radiation is a new experimental method to determine textures of materials, which due to the special properties of this radiation, in the future may have advantages in terms of accuracy of local texture measurements in comparison to established methods like Electron back scatter diffraction (EBSD). In the present study NiAl polycrystals with two different initial textures have been deformed in torsion at 727°C and 1000°C and their texture development has been measured with highenergy synchrotron radiation. Torsion enables the study of texture formation with strain as well as the exploration of large strains without changing the shape of the samples. The pole figures indicate the preferred alignment of ‹100› with the shear direction and {110} with the shear plane. High pressure torsion may also open new possibilities in terms of grain refinement and texture formation and thus ductilization of NiAl.


Author(s):  
L.E. Murr

The production of void lattices in metals as a result of displacement damage associated with high energy and heavy ion bombardment is now well documented. More recently, Murr has shown that a void lattice can be developed in natural (colored) fluorites observed in the transmission electron microscope. These were the first observations of a void lattice in an irradiated nonmetal, and the first, direct observations of color-center aggregates. Clinard, et al. have also recently observed a void lattice (described as a high density of aligned "pores") in neutron irradiated Al2O3 and Y2O3. In this latter work, itwas pointed out that in order that a cavity be formed,a near-stoichiometric ratio of cation and anion vacancies must aggregate. It was reasoned that two other alternatives to explain the pores were cation metal colloids and highpressure anion gas bubbles.Evans has proposed that void lattices result from the presence of a pre-existing impurity lattice, and predicted that the formation of a void lattice should restrict swelling in irradiated materials because it represents a state of saturation.


Author(s):  
Joseph J. Comer ◽  
Charles Bergeron ◽  
Lester F. Lowe

Using a Van De Graaff Accelerator thinned specimens were subjected to bombardment by 3 MeV N+ ions to fluences ranging from 4x1013 to 2x1016 ions/cm2. They were then examined by transmission electron microscopy and reflection electron diffraction using a 100 KV electron beam.At the lowest fluence of 4x1013 ions/cm2 diffraction patterns of the specimens contained Kikuchi lines which appeared somewhat broader and more diffuse than those obtained on unirradiated material. No damage could be detected by transmission electron microscopy in unannealed specimens. However, Dauphiné twinning was particularly pronounced after heating to 665°C for one hour and cooling to room temperature. The twins, seen in Fig. 1, were often less than .25 μm in size, smaller than those formed in unirradiated material and present in greater number. The results are in agreement with earlier observations on the effect of electron beam damage on Dauphiné twinning.


Author(s):  
C. C. Ahn ◽  
S. Karnes ◽  
M. Lvovsky ◽  
C. M. Garland ◽  
H. A. Atwater ◽  
...  

The bane of CCD imaging systems for transmission electron microscopy at intermediate and high voltages has been their relatively poor modulation transfer function (MTF), or line pair resolution. The problem originates primarily with the phosphor screen. On the one hand, screens should be thick so that as many incident electrons as possible are converted to photons, yielding a high detective quantum efficiency(DQE). The MTF diminishes as a function of scintillator thickness however, and to some extent as a function of fluorescence within the scintillator substrates. Fan has noted that the use of a thin layer of phosphor beneath a self supporting 2μ, thick Al substrate might provide the most appropriate compromise for high DQE and MTF in transmission electron microcscopes which operate at higher voltages. Monte Carlo simulations of high energy electron trajectories reveal that only little beam broadening occurs within this thickness of Al film. Consequently, the MTF is limited predominantly by broadening within the thin phosphor underlayer. There are difficulties however, in the practical implementation of this design, associated mostly with the mechanical stability of the Al support film.


Author(s):  
Tai D. Nguyen ◽  
Ronald Gronsky ◽  
Jeffrey B. Kortright

Nanometer period Ru/C multilayers are one of the prime candidates for normal incident reflecting mirrors at wavelengths < 10 nm. Superior performance, which requires uniform layers and smooth interfaces, and high stability of the layered structure under thermal loadings are some of the demands in practical applications. Previous studies however show that the Ru layers in the 2 nm period Ru/C multilayer agglomerate upon moderate annealing, and the layered structure is no longer retained. This agglomeration and crystallization of the Ru layers upon annealing to form almost spherical crystallites is a result of the reduction of surface or interfacial energy from die amorphous high energy non-equilibrium state of the as-prepared sample dirough diffusive arrangements of the atoms. Proposed models for mechanism of thin film agglomeration include one analogous to Rayleigh instability, and grain boundary grooving in polycrystalline films. These models however are not necessarily appropriate to explain for the agglomeration in the sub-nanometer amorphous Ru layers in Ru/C multilayers. The Ru-C phase diagram shows a wide miscible gap, which indicates the preference of phase separation between these two materials and provides an additional driving force for agglomeration. In this paper, we study the evolution of the microstructures and layered structure via in-situ Transmission Electron Microscopy (TEM), and attempt to determine the order of occurence of agglomeration and crystallization in the Ru layers by observing the diffraction patterns.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove

The silicides CoSi2 and NiSi2 are both metallic with the fee flourite structure and lattice constants which are close to silicon (1.2% and 0.6% smaller at room temperature respectively) Consequently epitaxial cobalt and nickel disilicide can be grown on silicon. If these layers are formed by ultra high vacuum (UHV) deposition (also known as molecular beam epitaxy or MBE) their thickness can be controlled to within a few monolayers. Such ultrathin metal/silicon systems have many potential applications: for example electronic devices based on ballistic transport. They also provide a model system to study the properties of heterointerfaces. In this work we will discuss results obtained using in situ and ex situ transmission electron microscopy (TEM).In situ TEM is suited to the study of MBE growth for several reasons. It offers high spatial resolution and the ability to penetrate many monolayers of material. This is in contrast to the techniques which are usually employed for in situ measurements in MBE, for example low energy electron diffraction (LEED) and reflection high energy electron diffraction (RHEED), which are both sensitive to only a few monolayers at the surface.


Author(s):  
Michael T. Marshall ◽  
Xianghong Tong ◽  
J. Murray Gibson

We have modified a JEOL 2000EX Transmission Electron Microscope (TEM) to allow in-situ ultra-high vacuum (UHV) surface science experiments as well as transmission electron diffraction and imaging. Our goal is to support research in the areas of in-situ film growth, oxidation, and etching on semiconducter surfaces and, hence, gain fundamental insight of the structural components involved with these processes. The large volume chamber needed for such experiments limits the resolution to about 30 Å, primarily due to electron optics. Figure 1 shows the standard JEOL 2000EX TEM. The UHV chamber in figure 2 replaces the specimen area of the TEM, as shown in figure 3. The chamber is outfitted with Low Energy Electron Diffraction (LEED), Auger Electron Spectroscopy (AES), Residual Gas Analyzer (RGA), gas dosing, and evaporation sources. Reflection Electron Microscopy (REM) is also possible. This instrument is referred to as SHEBA (Surface High-energy Electron Beam Apparatus).The UHV chamber measures 800 mm in diameter and 400 mm in height. JEOL provided adapter flanges for the column.


Author(s):  
L. Hultman ◽  
C.-H. Choi ◽  
R. Kaspi ◽  
R. Ai ◽  
S.A. Barnett

III-V semiconductor films nucleate by the Stranski-Krastanov (SK) mechanism on Si substrates. Many of the extended defects present in the films are believed to result from the island formation and coalescence stage of SK growth. We have recently shown that low (-30 eV) energy, high flux (4 ions per deposited atom), Ar ion irradiation during nucleation of III-V semiconductors on Si substrates prolongs the 1ayer-by-layer stage of SK nucleation, leading to a decrease in extended defect densities. Furthermore, the epitaxial temperature was reduced by >100°C due to ion irradiation. The effect of ion bombardment on the nucleation mechanism was explained as being due to ion-induced dissociation of three-dimensional islands and ion-enhanced surface diffusion.For the case of InAs grown at 380°C on Si(100) (11% lattice mismatch), where island formation is expected after ≤ 1 monolayer (ML) during molecular beam epitaxy (MBE), in-situ reflection high-energy electron diffraction (RHEED) showed that 28 eV Ar ion irradiation prolonged the layer-by-layer stage of SK nucleation up to 10 ML. Otherion energies maintained layer-by-layer growth to lesser thicknesses. The ion-induced change in nucleation mechanism resulted in smoother surfaces and improved the crystalline perfection of thicker films as shown by transmission electron microscopy and X-ray rocking curve studies.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2332
Author(s):  
Ahmad Mamoun Khamis ◽  
Zulkifly Abbas ◽  
Raba’ah Syahidah Azis ◽  
Ebenezer Ekow Mensah ◽  
Ibrahim Abubakar Alhaji

The purpose of this study was to improve the dielectric, magnetic, and thermal properties of polytetrafluoroethylene (PTFE) composites using recycled Fe2O3 (rFe2O3) nanofiller. Hematite (Fe2O3) was recycled from mill scale waste and the particle size was reduced to 11.3 nm after 6 h of high-energy ball milling. Different compositions (5–25 wt %) of rFe2O3 nanoparticles were incorporated as a filler in the PTFE matrix through a hydraulic pressing and sintering method in order to fabricate rFe2O3–PTFE nanocomposites. The microstructure properties of rFe2O3 nanoparticles and the nanocomposites were characterized through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM). The thermal expansion coefficients (CTEs) of the PTFE matrix and nanocomposites were determined using a dilatometer apparatus. The complex permittivity and permeability were measured using rectangular waveguide connected to vector network analyzer (VNA) in the frequency range 8.2–12.4 GHz. The CTE of PTFE matrix decreased from 65.28×10−6/°C to 39.84×10−6/°C when the filler loading increased to 25 wt %. The real (ε′) and imaginary (ε″) parts of permittivity increased with the rFe2O3 loading and reached maximum values of 3.1 and 0.23 at 8 GHz when the filler loading was increased from 5 to 25 wt %. A maximum complex permeability of 1.1−j0.07 was also achieved by 25 wt % nanocomposite at 10 GHz.


1994 ◽  
Vol 9 (2) ◽  
pp. 297-304 ◽  
Author(s):  
J.S. Luo ◽  
H.G. Lee ◽  
S.N. Sinha

The microstructure and superconducting properties of Bi2Sr2CaCu2Ox (Bi-2212) during high-energy attrition milling were investigated in detail by a combination of x-ray diffraction, scanning electron microscopy, transmission electron microscopy, and magnetization techniques. The starting superconducting powder was milled in a standard laboratory attritor using yttria-stabilized ZrO2 balls and a stainless steel tank. After selected time increments, the milling was interrupted and a small quantity of milled powder was removed for further analysis. It was found that the deformation process rapidly refines Bi-2212 into nanometer-size crystallites, increases atomic-level strains, and changes the plate-like morphology of Bi-2212 to granular submicron clusters. At short milling times, the deformation seems localized at weakly linked Bi-O double layers, leading to twist/cleavage fractures along the {001} planes. The Bi-2212 phase decomposes into several bismuth-based oxides and an amorphous phase after excessive deformation. The superconducting transition is depressed by about 10 K in the early stages of milling and completely vanishes upon prolonged deformation. A deformation mechanism is proposed and correlated with the evolution of superconducting properties. The practical implications of these results are presented and discussed.


Sign in / Sign up

Export Citation Format

Share Document