Mechanical Relaxation Studies of Sub-Rouse Modes in Amorphous Polymers

2012 ◽  
Vol 184 ◽  
pp. 52-59 ◽  
Author(s):  
Xue Bang Wu ◽  
Hua Guang Wang ◽  
Chang Song Liu ◽  
Zhen Gang Zhu

Mechanical spectroscopy is a powerful tool for the investigation of molecular dynamics of amorphous polymers over a large temperature range and frequency scale. In this work, by using high precision shear mechanical spectroscopy tool, we have investigated the segmental dynamics from local segmental relaxation to sub-Rouse modes in a series of amorphous polymers. We have demonstrated the existence of sub-Rouse modes slower than the local segmental motion in amorphous polymers. The sub-Rouse modes exhibit a similar change of dynamics at the same temperature TB ~1.2 Tg, as the local segmental relaxation through the temperature dependence of relaxation time and relaxation strength. Furthermore, the crossover relaxation time of the sub-Rouse modes at TB is almost the same for all the polymers investigated, i.e. τα'(TB) = 10-1±0.5 s, which is independent of molecular weight and molecular structure. This remarkable finding indicates that solely the time scale of the relaxation determines the change in dynamics of the sub-Rouse modes. According to the coupling model, the crossover is suggested to be caused by the onset of strong intermolecular cooperativity below TB. Hence the results suggest that the sub-Rouse modes and their properties are generally found in amorphous polymers by mechanical spectroscopy, and reveal the cooperative nature of the sub-Rouse modes.

2017 ◽  
Vol 19 (40) ◽  
pp. 27442-27451 ◽  
Author(s):  
Yao Fu ◽  
Vera Bocharova ◽  
Mengze Ma ◽  
Alexei P. Sokolov ◽  
Bobby G. Sumpter ◽  
...  

Backbone rigidity, counterion size and the static dielectric constant affect the glass transition temperature, segmental relaxation time and decoupling between counterion and segmental dynamics in significant manners.


2015 ◽  
Vol 60 (3) ◽  
pp. 2077-2084
Author(s):  
Xuebang Wu ◽  
Changsong Liu

Abstract The general trend in soft matter is to study systems of increasing complexity covering a wide range in time and frequency. Mechanical spectroscopy is a powerful tool for understanding the structure and relaxation dynamics of these materials over a large temperature range and frequency scale. In this work, we collect a few recent applications using low-frequency mechanical spectroscopy for elucidating the structural changes and relaxation dynamics in soft matter, largely based on the author’s group. We illustrate the potential of mechanical spectroscopy with three kinds of soft materials: colloids, polymers and granular systems. Examples include structural changes in colloids, segmental relaxations in amorphous polymers, and resonant dissipation of grain chains in three-dimensional media. The present work shows that mechanical spectroscopy has been applied as a necessary and complementary tool to study the dynamics of such complex systems.


2008 ◽  
Vol 137 ◽  
pp. 21-28 ◽  
Author(s):  
Andre Rivière ◽  
Michel Gerland ◽  
Veronique Pelosin

Internal friction peaks observed in single or polycrystals are clearly due to a dislocation relaxation mechanism. Because a sample observed by transmission electron microscopy (TEM) often exhibits in the same time various dislocation microstructures (isolated dislocations, dislocation walls, etc.) it is very difficult to connect the observed relaxation peak with a particular dislocation microstructure. Using isothermal mechanical spectroscopy (IMS), it is easier to compare, for instance, the evolution of a relaxation peak with measurement temperature to the microstructural evolution observed by in-situ TEM at the same temperatures. IMS was used to study a relaxation peak in a 5N aluminium single crystal firstly 1% cold worked and then annealed at various temperatures. TEM experiments performed in the same material at various temperatures equal to the temperatures used for the damping experiments made possible to link this internal friction peak with a relaxation effect occurring inside dislocation walls. In two other experiments in a 4N aluminium polycrystal and in a metal matrix composite with SiC whiskers, it is shown that the observed relaxation peaks are connected to the motion of dislocations inside polygonization boundaries in the first case and in dislocation pile-ups around each whisker in the second one. Theoretical models proposed to explain such relaxation peaks due to a dislocation motion inside a dislocation wall or network are discussed.


2008 ◽  
Vol 81 (3) ◽  
pp. 506-522 ◽  
Author(s):  
C. G. Robertson ◽  
C. M. Roland

Abstract We review the literature concerned with the effect of proximity to a filler surface on the local segmental mobility of polymer chains. This mobility is commonly assessed from either the glass transition temperature, Tg, or the segmental relaxation times measured by mechanical, dielectric, or NMR spectroscopy. Published studies report increases, decreases, or no change in Tg upon the addition of carbon black, silica, and other reinforcing fillers. Similarly, the segmental relaxation times have been found to increase or be invariant to the presence of nanometer-sized particles. Some of these discrepancies can be ascribed to ambiguous methods of data analysis; others likely reflect the variation in filler-polymer interaction among different systems. There are unequivocal examples of polymers that have segmental dynamics and glass transitions unaffected by nano-particle reinforcement. However, the general principles governing the behavior remain to be clarified, with further work, focusing on the micromechanics at the particle interface, required for resolution of this important aspect of rubber science and technology.


2010 ◽  
Vol 425 ◽  
pp. 263-270 ◽  
Author(s):  
Paolo Deodati ◽  
Riccardo Donnini ◽  
Saulius Kaciulis ◽  
Alessio Mezzi ◽  
Roberto Montanari ◽  
...  

The composite, consisting of Ti6Al4V matrix reinforced by unidirectional SiC fibres (SCS-6), has been investigated by mechanical spectroscopy at temperatures up to 1,173 K. For comparison, the same experiments have been performed on the corresponding monolithic alloy. The internal friction (IF) spectrum of the composite exhibits a new relaxation peak superimposed to an exponentially increasing background. This peak, which is not present in the monolithic alloy, has an activation energy H = 186 kJ mol-1 and a relaxation time 0 = 2.3 x 10-15 s. The phenomenon has been attributed to a reorientation of interstitial-substitutional pairs in the  phase of Ti6Al4V matrix around the fibres. This explanation is supported by the results of micro-chemical characterization carried out by X-ray photoelectron spectroscopy (XPS) combined with Ar ion sputtering.


2015 ◽  
Vol 365 ◽  
pp. 317-322
Author(s):  
Odila Florêncio ◽  
Paulo Wilmar Barbosa Marques ◽  
Paulo Sergio Silva ◽  
Javier Andres Muñoz Chaves ◽  
L.C. Rodriguez Aliaga ◽  
...  

Anelastic properties of Bulk Metallic Glasses (BMG) were studied by mechanical spectroscopy using a flexural vibration apparatus. BMG’s samples, with nominal composition Cu48Zr43Al9and Cu54Zr40Al6, were produced by skull push-pull casting technique in rectangular cavity cooper mold. In both samples, the differential scanning calorimeter patterns have evidenced the presence of amorphous structure, although the X-ray diffraction for Cu48Zr43Al9composition has shown a heterogeneous microstructure embedded in the amorphous matrix. Anelastic relaxation spectra were obtained using an acoustic elastometer system with vibration frequency in the kilohertz bandwidth, a heating rate of 1 K/min, vacuum greater than 10-5mBar in the temperature range of 300 K to 620 K. In the flexural apparatus, an acoustic elastometer system, the internal friction (energy loss) and the elastic modulus were obtained by free decay of vibrations and by the squared of the oscilation frequency, respectively. Internal friction spectra were not reproducible among the measurements, which may imply atomic rearrangement in the samples due to consecutive heating. Normalized elastic modulus data showed distinct behavior from the first to the other measurements evidencing irreversible microstructural alterations in the samples possibly associated with mechanical relaxation due to the motion of atoms or clusters in the glassy state.


1993 ◽  
Vol 66 (5) ◽  
pp. 817-826 ◽  
Author(s):  
K. L. Ngai ◽  
C. M. Roland ◽  
A. F. Yee

Abstract The coupling model of relaxation is applied to crosslinked rubber, with a connection drawn between the dynamics of network junctions and statistical mechanics derived rubber elasticity theory. The suggestion that unifying concepts must underlie dynamical models and thermodynamic theories is shown to be supported by analyses of recent 31P NMR spectroscopy measurements by Shi, Dickinson, MacKnight and Chien on polytetrahydrofuran networks and of our mechanical relaxation data on stretched and unstretched polycarbonate.


1996 ◽  
Vol 455 ◽  
Author(s):  
K. L. Ngai ◽  
C. M. Roland

ABSTRACTFrom the Raman spectra and related inferences from low temperature specific heat data, Sokolov and coworkers have established that the ratio of the quasielastic and vibrational contributions at low temperatures (5∼10K) up to Tg correlates well with the degree of fragility and β of the glass-former. As pointed out by Sokolov (see his contribution in this Volume) such a correlation between the fast dynamics and structural a-relaxation at Tg(i.e., m and β) is intriguing, since at and below Tg, the α-relaxation time τα is more than twelve orders of magnitude longer than the quasielastic contribution and the boson peak. We show in this paper how the Coupling Model (CM) may provide an explanation for this correlation.


Sign in / Sign up

Export Citation Format

Share Document