Structural and Magnetic Properties of Mn-Zn Ferrites Synthesized by Microwave-Hydrothermal Process

2015 ◽  
Vol 232 ◽  
pp. 45-64 ◽  
Author(s):  
K. Praveena ◽  
K. Sadhana ◽  
Hardev Singh Virk

Nanocrystalline Mn1-xZnxFe2O4 (x=0, 0.2, 0.4, 0.6, 0.8 and 1.0) ferrites have been successfully synthesised using microwave–hydrothermal method for high frequency applications. The nanopowders were characterised using X-ray diffraction (XRD) and sintered using microwave furnace at 900°C and the total time taken for sintering is 30 min. The frequency dependence of real and imaginary part of permeability were measured in the range 1 MHz to 1.8 GHz. The saturation magnetisation and coercive force were obtained using a vibration sample magnetometer (VSM) in the field of 1.5 T. The temperature dependence of initial permeability (μi) was measured in the temperature range of 300K to 600K at 10 kHz. The high values of permeability and saturation magnetization enables these materials to be the potential candidates for a number of applications, for example, in transformers, choke coils, noise filters and recording heads.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Surangkana Wannapop ◽  
Titipun Thongtem ◽  
Somchai Thongtem

SrMoO4hierarchical nanostructures were successfully produced by a one step of 270 W microwave-hydrothermal process of one of the solutions containing three strontium salts [Sr(NO3)2, Sr(CH3CO2)2, and SrCl2·6H2O] and (NH4)6Mo7O24·4H2O for different lengths of time. The as-produced products were characterized by X-ray diffraction, electron microscopy, and spectroscopy. In this research, they were primitive tetragonal structured donut-like SrMoO4, with the main 881cm−1  ν1(Ag)symmetric stretching vibration mode of[MoO4]2−units and 3.92 eV energy gap.


2014 ◽  
Vol 809-810 ◽  
pp. 122-127 ◽  
Author(s):  
Li Xiong Yin ◽  
Fei Fei Wang ◽  
Jian Feng Huang ◽  
Dan Wang ◽  
Jia Yin Li

SnO2nanocrystals were synthesized using SnCl4•5H2O and NH3•H2O as the main raw materials and distilled water as the solvent by microwave hydrothermal. Reaction temperature on the structure and photocatalytic activities of the SnO2nanocrystals by microwave hydrothermal process was studied. The phase composition, morphologies and photocatalytic activities of the product were characterized by XRD (X-ray diffraction), SEM (scanning electron microscope), TEM (transmission electron microscope) and photochemical reaction instrument. Results show the crystalline and conglobation of the product have significant effect on its photocatalytic properties. The homogeneous low-agglomerated and well crystallined SnO2nanocrystals prepared at 180 °C has good photocatalytic activities during photocatalytic degradation of RhB process.


2011 ◽  
Vol 2011 ◽  
pp. 1-5
Author(s):  
Ya-Qin Wang ◽  
Jian-Feng Huang ◽  
Li-Yun Cao ◽  
Xie-Rong Zeng

A novel fabrication technique of yttrium silicate (Y2SiO5) nanocrystallites has been investigated by a microwave hydrothermal process with a later heat treatment. The prepared powders were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermal analysis, and field emission scanning electron microscopy (FESEM). Results show that high-purity yttrium silicate (Y2SiO5) powders can be synthesized by the microwave hydrothermal process with a later heat treatment at 700°C for 2 h. The Y2SiO5 precursor powders prepared by microwave hydrothermal process without heat treatment are weak crystallization, which shows an irregular and cotton-fiber-like morphology. After the heat treatment at 700°C for 2 h, well crystallized phase-pure Y2SiO5 powders with 400–600 nm grainy morphology are achieved. Further heat treatment at higher temperature will result in the sintering and serious agglomeration of the powders. The formation process of Y2SiO5 nanocrystallites was explained based on the photographs of SEM.


2021 ◽  
Author(s):  
yingmeng qi ◽  
Qi Han ◽  
li wu ◽  
Jun Li

A series of niobium-containing mesoporous materials Nb-SBA-15 have been prepared by sonication–impregnation and hydrothermal process. The dispersion and structural properties of niobium-containing species were systematically characterized by X-ray diffraction, scanning...


Author(s):  
Nataliya L. Gulay ◽  
Rolf-Dieter Hoffmann ◽  
Jutta Kösters ◽  
Yaroslav M. Kalychak ◽  
Stefan Seidel ◽  
...  

Abstract The equiatomic indide ScPtIn (ZrNiAl type, space group P 6 ‾ $‾{6}$ 2m) shows an extended solid solution Sc3Pt3–xIn3. Several samples of the Sc3Pt3–xIn3 series were synthesized from the elements by arc-melting and subsequent annealing, or directly in a high frequency furnace. The lowest platinum content was observed for Sc3Pt2.072(3)In3. All samples were characterized by powder X-ray diffraction and their lattice parameters and several single crystals were studied on the basis of precise single crystal X-ray diffractometer data. The correct platinum occupancy parameters were refined from the diffraction data. Decreasing platinum content leads to decreasing a and c lattice parameters. Satellite reflections were observed for the Sc3Pt3–xIn3 crystals with x = 0.31–0.83. These satellite reflections could be described with a modulation vector ( 1 3 , 1 3 , γ ) $\left(\frac{1}{3},\frac{1}{3},\gamma \right)$ ( γ = 1 2 $\gamma =\frac{1}{2}$ c* for all crystals) and are compatible with trigonal symmetry. The interplay of platinum filled vs. empty In6 trigonal prisms is discussed for an approximant structure with space group P3m1.


2011 ◽  
Vol 66 (7) ◽  
pp. 671-676 ◽  
Author(s):  
Trinath Mishra ◽  
Rainer Pöttgen

The equiatomic rare earth compounds REPtZn (RE = Y, Pr, Nd, Gd-Tm) were synthesized from the elements in sealed tantalum tubes by high-frequency melting at 1500 K followed by annealing at 1120 K and quenching. The samples were characterized by powder X-ray diffraction. The structures of four crystals were refined from single-crystal diffractometer data: TiNiSi type, Pnma, a = 707.1(1), b = 430.0(1), c = 812.4(1) pm, wR2 = 0.066, 602 F2, 21 variables for PrPt1.056Zn0.944; a = 695.2(1), b = 419.9(1), c = 804.8(1) pm, wR2 = 0.041, 522 F2, 21 variables for GdPt0.941Zn1.059; a = 688.2(1), b = 408.1(1), c = 812.5(1) pm, wR2 = 0.041, 497 F2, 22 variables for HoPt1.055Zn0.945; a = 686.9(1), b = 407.8(1), c = 810.4(1) pm, wR2 = 0.061, 779 F2, 20 variables for ErPtZn. The single-crystal data indicate small homogeneity ranges REPt1±xZn1±x. The platinum and zinc atoms build up three-dimensional [PtZn] networks (265 - 269 pm Pt-Zn in ErPtZn) in which the erbium atoms fill cages with coordination number 16 (6 Pt + 6 Zn + 4 Er). Bonding of the erbium atoms to the [PtZn] network proceeds via shorter RE-Pt distances, i. e. 288 - 293 pm in ErPtZn.


2008 ◽  
Vol 368-372 ◽  
pp. 238-240 ◽  
Author(s):  
Xi Tang Wang ◽  
Girish M. Kale

Microwave sintering behaviors of four different compositions of YSZ electrolyte materials were investigated. The samples were sintered in 2.45GHz microwave furnace. For comparison, conventional sintering was performed at 1821K.The densities of sintered samples showed considerable enhancement in the densification process under the influence of microwave fields. The samples with lower Y2O3 content are easy to sinter. The influence of the composition and sintering methods on the final phase composition and microstructure were investigated by X-ray diffraction and scanning electron microcopy. Finer and more uniform microstructures were observed in the microwave sintered samples comparing to the conventionally sintered samples.


2010 ◽  
Vol 24 (30) ◽  
pp. 5973-5985
Author(s):  
M. GUNES ◽  
H. GENCER ◽  
T. IZGI ◽  
V. S. KOLAT ◽  
S. ATALAY

NiFe 2 O 4 nanoparticles were successfully prepared by a hydrothermal process, and the effect of temperature on them was studied. The particles were annealed at various temperatures ranging from 413 to 1473 K. Studies were carried out using powder X-ray diffraction, scanning electron microscopy, infrared spectroscopy, differential thermal analysis, thermogravimetric analysis and a vibrating sample magnetometer. The annealing temperature had a significant effect on the magnetic and structural parameters, such as the crystallite size, lattice parameter, magnetization and coercivity.


2020 ◽  
Vol 235 (4-5) ◽  
pp. 117-125
Author(s):  
Myroslava Horiacha ◽  
Maximilian K. Reimann ◽  
Jutta Kösters ◽  
Vasyl‘ I. Zaremba ◽  
Rainer Pöttgen

AbstractThe quaternary gallium-rich intermetallic phases RE2Pt3Ga4In with RE = Y and Gd-Tm were synthesized by arc-melting of the elements and subsequent annealing. Small single crystals were obtained by high-frequency annealing of the samples in sealed tantalum ampoules. The polycrystalline samples were characterized through their X-ray powder patterns. The RE2Pt3Ga4In phases crystallize with a site ordering variant of the orthorhombic Y2Rh3Sn5 type, space group Cmc 21. The structures of Gd2Pt3Ga4In, Dy2Pt3Ga4.14In0.86, Er2Pt3Ga4.17In0.83 and Tm2Pt3Ga4.21In0.79 were refined from single-crystal X-ray diffraction data. The single crystals reveal small homogeneity ranges RE2Pt3Ga4±xIn1±x. The striking geometrical structural building units are slightly distorted trigonal prisms around the three crystallographically independent platinum atoms: Pt1@RE4Ga2, Pt2@RE2Ga4 and Pt3@RE2Ga2In2. Based on these prismatic building units, the RE2Pt3Ga4In structures can be described as intergrowth variants of TiNiSi and NdRh2Sn4 related structural slabs. Temperature dependent magnetic susceptibility studies of Gd2Pt3Ga4In and Tb2Pt3Ga4In show Curie-Weiss behavior and the experimental magnetic moments confirm stable trivalent gadolinium respectively terbium. Gd2Pt3Ga4In and Tb2Pt3Ga4In order antiferromagnetically at TN = 15.8(1) and 26.0(1) K. Magnetization curves at 3 K show field-induced spin reorientations.


2012 ◽  
Vol 624 ◽  
pp. 47-50
Author(s):  
Shi Lei Zhang ◽  
Ben Niu ◽  
Enlei Qi ◽  
Lei Wang ◽  
Jie Qiang Wang

In this paper, KMnO4 was used as raw material, nano-MnO2 with different morphologies such as flowers globular, hollow tubular and rodlike were obtained by the microwave assisted hydrothermal synthesis under the acidic condition. The crystal structure and morphology of the resultant MnO2 were characterized by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM), respectively. The elements and content of samples were tested by Energy Dispersive Spectrometer (EDS). The influence of reaction temperature and holding time on crystal forms and morphologies of the MnO2 was analyzed.


Sign in / Sign up

Export Citation Format

Share Document