Microorganisms Oxidize Iron (II) Ions in the Presence of High Concentrations of Sodium Chloride - Potentially Useful for Bioleaching

2017 ◽  
Vol 262 ◽  
pp. 364-367 ◽  
Author(s):  
Dieu Huynh ◽  
Stefan Kaschabek ◽  
Wolfgang Sand ◽  
Michael Schlömann

Acidophilic leaching microorganisms have been reported to be in general intolerant to high salinity, namely high concentrations of chloride. At present this restriction hampers the use of sea water for bioleaching technology. Enrichment cultures obtained in this study from a former ore deposit near the Spanish coast oxidize ferrous iron in the presence of up to 50 gL-1 NaCl at pH 2.5 and 37°C. The presence of at least 5 gL-1 NaCl was shown to be an obligate requirement for iron oxidation. The major microbial groups comprise Alicyclobacillus and Arthrobacter. The findings may be of biotechnological relevance.

1960 ◽  
Vol 6 (3) ◽  
pp. 367-379 ◽  
Author(s):  
Jack McLachlan

Dunaliella tertiolecta Butcher was found to be a euryhaline organism which grew at salinities ranging from 3.75 to 120‰. All the conservative elements of sea water, with the exception of chlorine, were found necessary for growth of the alga. The minimum requirement for sodium was much greater than that for any other element, and it was not possible to substitute other monovalent cations for the minimum requirement. Also, the alga could tolerate high concentrations of sodium chloride. The potassium and sulphur concentrations of the medium could be reduced to very low levels. Dunaliella could also tolerate high concentrations of these two elements. The addition of lithium to the medium inhibited the growth of the alga. High concentrations of sodium could partially eliminate the inhibition due to lithium. The minimum concentrations of calcium and magnesium necessary for growth approached the concentrations found in fresh waters. Calcium and magnesium were inhibitory at high concentrations, but the inhibition at high concentrations could be prevented if a Mg/Ca ratio of 4 was maintained over a wide range of concentrations in the medium.


2013 ◽  
Vol 825 ◽  
pp. 406-409
Author(s):  
Akemi Matsubara ◽  
Jasmin E. Hurtado

Mining industry is a source of wealth but also of environmental pollution in Peru. In this study 12 colonies of actinomycetes were isolated in acidic cultures from mineral ores and concentrates from mines of the Peruvian highlands. The isolates were characterized phenotypically by microscopy and growth at different conditions as pH tolerance, temperature, and sodium chloride, heavy metals resistance; ferrous iron and thiosulfate oxidation. All isolates were identified as actinomycetes based on their cultural and spore characteristics. Most of the isolates were able to grow at 8 - 45°C and pH 4 - 11. 60% of isolates grew at 10% NaCl but none of them growth at 13%. Iron oxidation was shown by 60% of isolates at pH 4, but only 25% were able to oxidize iron at pH 2. Thiosulfate oxidation was not detected in any isolate. Most of the isolates showed capacity to grow in medium with 200 ppm of Pb, Fe, Zn and 100 ppm of Cu. All of the physiological characteristics found in this work indicate the potential of these isolates as source for bioremediation and bioleaching.


2017 ◽  
Vol 262 ◽  
pp. 471-475
Author(s):  
Aleksander Bulaev

Resistance of microorganisms predominating in biohydrometallurgical processes including bacteria of the genus Sulfobaсillus and archaea of the genus Acidiplasma to ferric iron ions was studied. Capabilities of the strains for growth and ferrous iron oxidation in the media containing high concentrations of ferric iron ions (of 250 to 1000 mM) were evaluated. Ferric iron ions significantly inhibited oxidative activity and growth of the studied microorganisms. It was revealed that bacteria of the genus Sulfobacillus were not able to oxidize ferrous iron actively when ferric iron concentration exceeded 500 mM, whereas archaea of the genus Acidiplasma completely oxidized ferrous iron in the medium containing 1000 mM of Fe3+. Growth of the microorganisms was inhibited by relatively low concentrations of ferric iron. Microorganisms did not grow in the medium containing more than 750 mM of Fe3+ and cells of all studied strains lysed in presence of high concentrations of ferric iron. It was shown, that archaea of the genus Acidiplasma of the family Ferroplasmaceae were more resistant to high concentrations of ferric iron than bacteria of the genus Sulfobacillus. The results obtained are important for understanding of the regularities of the formation of microbial communities performing technological processes.


2009 ◽  
Vol 71-73 ◽  
pp. 255-258 ◽  
Author(s):  
K. Penev ◽  
D. Karamanev

The effects of temperature, pH and iron concentration on the kinetics of ferrous iron biooxidation by a free suspended culture of Leptospirillum ferriphilum were studied in shake flasks and a circulating bed bioreactor at moderate to high total iron concentration. The kinetic study showed that there are two distinct modes of iron biooxidation: growth associated and non-growth associated, depending on the pH of the medium. There were also distinctive maxima of the effect of temperature and pH on the rate of biooxidation. A kinetic model of the process was proposed, based on an electrochemical-enzymatic model. The proposed model indicates that at moderate to high concentrations (above ~12 g/L), the total iron concentration becomes the single most prominent inhibiting factor.


1970 ◽  
Vol 64 (1) ◽  
pp. 150-158 ◽  
Author(s):  
S. Pors Nielsen

ABSTRACT Intravenous infusion of isotonic magnesium chloride into young cats with a resultant mean plasma magnesium concentration of 7.7 meq./100 g protein was followed by a significant lowering of the plasma calcium concentration in 90 minutes. The rate of decrease of plasma calcium is consistent with the hypothesis that calcitonin is released by magnesium in high concentrations. There was no decrease in the plasma calcium concentration in cats of the same weight thyroparathyroidectomized 60 min before an identical magnesium chloride infusion or an infusion of isotonic sodium chloride at the same flow rate. The hypercalciuric effect of magnesium could not account for the hypocalcaemic effect of magnesium. Plasma magnesium concentration during magnesium infusion into cats with an intact thyroid-parathyroid gland complex was slightly, but not significantly higher than in acutely thyroparathyroidectomized cats.


Author(s):  
Н. Демиденко ◽  
N. Demidenko

In the Mezen bay and estuaries Mezen and Kuloy can be high concentrations of mud suspension there, involving the formation at times mobile suspensions and settled mud. Within estuaries the river water is mixed with the sea water by the action of tidal motions, by waves on the sea surface and by the river discharge forcing its way to the sea. Nearly all shallow tidal estuaries, where currents exceed about 1,0m s-1 and where sand is present, have sand waves. Sand waves have a variety of cross-sectional and plan forms.


2010 ◽  
Vol 56 (10) ◽  
pp. 803-808 ◽  
Author(s):  
Tatiana Y. Dinarieva ◽  
Anna E. Zhuravleva ◽  
Oksana A. Pavlenko ◽  
Iraida A. Tsaplina ◽  
Alexander I. Netrusov

The iron-oxidizing system of a moderately thermophilic, extremely acidophilic, gram-positive mixotroph, Sulfobacillus sibiricus N1T, was studied by spectroscopic, high-performance liquid chromatography and inhibitory analyses. Hemes B, A, and O were detected in membranes of S. sibiricus N1T. It is proposed that the electron transport chain from Fe2+ to O2 is terminated by 2 physiological oxidases: aa3-type cytochrome, which dominates in the early-exponential phase of growth, and bo3-type cytochrome, whose role in iron oxidation becomes more prominent upon growth of the culture. Both oxidases were sensitive to cyanide and azide. Cytochrome aa3 was more sensitive to cyanide and azide, with Ki values of 4.1 and 2.5 µmol·L–1, respectively, compared with Ki values for cytochrome bo3, which were 9.5 µmol·L–1 for cyanide and 7.0 µmol·L–1 for azide. This is the first evidence for the participation of a bo3-type oxidase in ferrous iron oxidation. The respiratory chain of the mixotroph contains, in addition to the 2 terminal oxidases, a membrane-bound cytochrome b573.


2018 ◽  
Vol 7 (4) ◽  
pp. 147-156
Author(s):  
Laredj-Zazou Rahma ◽  
Toumi Benali Fawzia ◽  
Bouazza Sofiane

Stress salinity has an important effect on crops physiology. The scope of our study was to evaluate the effect of salt stress tolerance as determined through growth attributes, water status and ion content in (Phaseolus vul-garis. L), the variety of El-Djadida in 6 weeks post stress application. The ex-periment was performed under glasshouse, in controlled conditions, in pots and irrigated with nutrient solution of Hoagland. Plants were irrigated with water containing sodium chloride alone (100 and 200 meq.l-1) combined with sodium chloride (NaCl) and calcium chloride (CaCl2) (100 and 150 meq.l-1). The results obtained showed that the salt application had a depressive effect on the organic growth however, this trend was dependant on the intensity of the stress. The hydric state of the plant varied with the concentration of sub-strate, thus exhibiting the ability to moderate the sensitive plant to adjust gradually to their osmotic pressure even by maintaining high concentrations of K+. The distribution of Na+, K+ and Ca++ in plant organs leaves and roots highlighted that the high level of salinity increased with levels of Na+ which inhibited the absorption of Ca++ and K+ ions.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3162 ◽  
Author(s):  
Ana Gutiérrez-Preciado ◽  
Carlos Vargas-Chávez ◽  
Mariana Reyes-Prieto ◽  
Omar F. Ordoñez ◽  
Diego Santos-García ◽  
...  

We report the genome sequence ofExiguobacterium chiriqhuchastr. N139, isolated from a high-altitude Andean lake. Comparative genomic analyses of theExiguobacteriumgenomes available suggest that our strain belongs to the same species as the previously reportedE. pavilionensisstr. RW-2 andExiguobacteriumstr. GIC 31. We describe this species and propose thechiriqhuchaname to group them. ‘Chiri qhucha’ in Quechua means ‘cold lake’, which is a common origin of these three cosmopolitan Exiguobacteria. The 2,952,588-bpE. chiriqhuchastr. N139 genome contains one chromosome and three megaplasmids. The genome analysis of the Andean strain suggests the presence of enzymes that conferE. chiriqhuchastr. N139 the ability to grow under multiple environmental extreme conditions, including high concentrations of different metals, high ultraviolet B radiation, scavenging for phosphorous and coping with high salinity. Moreover, the regulation of its tryptophan biosynthesis suggests that novel pathways remain to be discovered, and that these pathways might be fundamental in the amino acid metabolism of the microbial community from Laguna Negra, Argentina.


Sign in / Sign up

Export Citation Format

Share Document