Synthesis of Silver Nanoparticles by Hydrothermal Processing

2021 ◽  
Vol 323 ◽  
pp. 1-7
Author(s):  
Enkhtuul Surenjav ◽  
Battseveen Buyankhishig ◽  
Narandalai Byamba-Ochir ◽  
Nemekhbayar Davaadorj ◽  
Zhi Qiang Song ◽  
...  

Hydrothermal water treatments of silver acetate (CH3COOAg) were investigated to reveal the factors controlling the formation of silver nanoparticles (AgNPs) with uniform size distribution. The effects of reaction time and concentration of silver acetate solution on the synthesis of Ag nanoparticles were studied, and the fabricated products were characterized. The hydrothermal water treatments of CH3COOAg were carried out between the temperatures of 250 - 450 °C in a batch reactor. In supercritical water regions, at 400 °C and a pressure of 31.5 MPa, silver particles are rapidly synthesized due to reaction rate increases at a low dielectric constant of supercritical water. The preparation of the silver particles with 30-80 nm in size showed a highly crystalline structure identified by XRD and TEM observations.

Author(s):  
Buyankhishig B ◽  
Narandalai B ◽  
Enkhtuul S

Supercritical water (SCW) technology is a relatively novel and green method compared with others for the synthesize of metal nanoparticles. It is considered one of the most suitable methods for loading nanoparticles in surface of porous materials due to the water in supercritical conditions has a high diffusivity, well dispersive and it has a same carrier characteristic as like a gas. Silver nanoparticles and silver loaded activated carbons were synthesized using silver acetate solution under supercritical water condition at 4000C and 31.15 MPa in a batch reactor. This study was investigated effect of operational parameters on the particle size of silver nanoparticles in particularly the concen-tration of silver salt solution and the reaction time. The experiments were carried out to test the silver salt concentra-tion at 0.01 M, 0.02 M, 0.05M, and the reaction time of 15 and 30 minutes. When the silver acetate concentration and reaction time increased agglomerations of silver particles were observed on the surface of activated carbons. The structure, morphology and particle size of synthesized products were determined by X-ray diffraction (XRD), Scan-ning electron microscope (SEM) and Transmission electron microscope (TEM). Суперкртитик усан орчинд мөнгөний нанопартиклыг гарган авах Хураангуй: Суперкритик усны арга нь металлын нанопартикл гарган авах бусад аргуудтай харьцуулахад харьцангуй шинэ арга юм. Суперкритик нөхцөл дахь ус нь диффузийн коэффициент өндөртэй, тархалт сайтай, хийтэй адил зөөж тээвэрлэх шинж чанар үзүүлдэг тул сүвэрхэг материал дээр нанопартикл үүсгэхэд тохиромжтой аргуудын нэг гэж үздэг. Мөнгөний нанопартикл болон идэвхжүүлсэн нүүрсэн дээр суулгасан мөнгөний нанопартиклыг суперкритик усны аргаар мөнгөний давсны усан уусмал хэрэглэн гарган авсан. Мөнгөний нанопартиклыг гарган авахад нөлөөлөх гол хүчин зүйлүүдэд хамаарах мөнгөний давсны уусмалын концентрац болон урвал явагдах хугацааны нөлөөг судалсан бөгөөд концентрацыг 0.01 М, 0.02 М ба 0.05 М, харин урвал явагдах хугацааг 15 ба 30 минут гэсэн нөхцөлүүдэд туршилтыг явуулсан. Урвал явагдах хугацаа болон мөнгөний давсны уусмалын концентрац ихсэхэд үүссэн мөнгөний жижиг хэсгүүдийн бөөгнөрөл илүү нэмэгдэж байсан. Гарган авсан материалуудын талст бүтэц, түүний хэмжээ болон морфологийн шинж чанарыг рентген дифрактометр (XRD), сканнинг электрон микроскоп (SEM) болон нэвтрүүлэлтийн электрон микроскоп (TEM) ашиглан тодорхойлсон. Түлхүүр үг: Суперкритик ус, мөнгөний нанопартикл, урвал явагдах хугацаа, уусмалын концентрац.


2019 ◽  
Vol 288 ◽  
pp. 59-64
Author(s):  
Narandalai Byamba-Ochir ◽  
Battseveen Buyankhishig ◽  
Nyamsuren Byambasuren ◽  
Enkhtuul Surenjav

The synthesis of silver nanoparticles loaded on the activated carbon (AC) surface were performed under SCW condition at 673 K and 31.15 MPa in a batch reactor. In supercritical region, fine particles are rapidly synthesized due to reaction rate increase at low dielectric constant of supercritical water. Samples were prepared with different concentrations of silver acetate solution and various reaction times. The synthesized silver loaded on AC particles were characterized by the Fourier transform infrared spectroscopy (FTIR),X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). FTIR spectrum of primary activated carbon, activated carbon treated under supercritical water condition and synthesized AC-Ag was compared. The particles size and crystallite size of silver deposited on AC surface were analyzed by TEM and XRD, respectively.


2021 ◽  
Vol 22 (48) ◽  
pp. 25-30
Author(s):  
Narandalai Byamba-ochir ◽  
Nemekhbayar Davaadorj ◽  
Battseveen Buyankhishig ◽  
Enkhtuul Surenjav

Silver nanoparticles (AgNPs) and silver nanoparticles doped activated carbon (AC-Ag) composite materials were synthesized by hydrothermal processes in supercritical water conditions (29 MPa and 400 °C) using batch reactor. We studied the influence of the precursor solution concentration, reaction temperature under the hydrothermal conditions, and synthesis time on the properties of synthesized materials. The properties of plain AgNPs and AC-Ag composite materials synthesized in supercritical water, including crystallinity, particle size, and molecular interactions between AC and Ag were investigated, comprehensively. Compared to the plain AgNPs, the activated carbon-supported Ag nanocomposite was synthesized faster due to the active functional groups of activated carbon. Furthermore, the FTIR results reveal that the silver nanoparticles are attached to the activated carbon surface in the presence of oxygen bonded carbonyl and carboxyl groups. The nano-sized metal silver particles were observed on the AC surface when analyzed by TEM and XRD. All results imply that the supercritical water condition allows the formation of silver particles less than 100 nm either in the form of plain particles or deposited on the activated carbon surface using the silver acetate precursor solution. This environmentally benign supercritical hydrothermal process can replace the conventional method and become a novel synthesis method for preparing various new materials.


2020 ◽  
Vol 21 (11) ◽  
pp. 1129-1137 ◽  
Author(s):  
Somayeh Mirsadeghi ◽  
Masoumeh F. Koudehi ◽  
Hamid R. Rajabi ◽  
Seied M. Pourmortazavi

Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides. Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM. Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively. Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.


Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2475
Author(s):  
Amirah Shafilla Mohamad Kasim ◽  
Arbakariya Bin Ariff ◽  
Rosfarizan Mohamad ◽  
Fadzlie Wong Faizal Wong

Silver nanoparticles (AgNPs) have been found to have extensive biomedical and biological applications. They can be synthesised using chemical and biological methods, and coated by polymer to enhance their stability. Hence, the changes in the physico-chemical characteristics of AgNPs must be scrutinised due to their importance for biological activity. The UV-Visible absorption spectra of polyethylene glycol (PEG) -coated AgNPs displayed a distinctive narrow peak compared to uncoated AgNPs. In addition, High-Resolution Transmission Electron Microscopy analysis revealed that the shapes of all AgNPs, were predominantly spherical, triangular, and rod-shaped. Fourier-Transform Infrared Spectroscopy analysis further confirmed the role of PEG molecules in the reduction and stabilisation of the AgNPs. Moreover, dynamic light scattering analysis also revealed that the polydispersity index values of PEG-coated AgNPs were lower than the uncoated AgNPs, implying a more uniform size distribution. Furthermore, the uncoated and PEG-coated biologically synthesised AgNPs demonstrated antagonisms activities towards tested pathogenic bacteria, whereas no antagonism activity was detected for the chemically synthesised AgNPs. Overall, generalisation on the interrelations of synthesis methods, PEG coating, characteristics, and antimicrobial activity of AgNPs were established in this study.


2021 ◽  
Author(s):  
Vanaraj sekar

Abstract A simple and eco-friendly method for the green synthesis of silver nanoparticles (AgNPs) by ultrasound-assisted strategy using Barleria buxifolia leaf extract as a reducing and capping agent was established in this study. The obtained AgNPs were characterized. UV-vis spectrum, Fourier transform infrared spectroscopy (FTIR), scanning and transmission electron microscopy (SEM and TEM), Energy Dispersive X-Ray Analyzer (EDX), X-ray diffraction, dynamic light scattering (DLS) analysis showed that the obtained AgNPs were mono dispersed spheres with uniform size of 80 nm. UV-vis spectroscopy, FTIR, and XRD analysis indicated that the surface of the obtained AgNPs was covered with organic molecules in plant extracts. The results of ABTS assays showed that high antioxidant activity was seen in the obtained AgNPs. Green synthesized AgNPs showed potent antibacterial and anti-biofilm activity against tested pathogens. Cytotoxicity assay showed that the obtained AgNPs were significantly cytotoxic to cancer cell line (MCF-7). In addition, the AgNPs synthesized in this paper can also photo catalytically degrade methylene blue dye under visible light. The potent bioactivity exhibited by the green synthesized silver nanoparticles leads towards the multiple use as antioxidant, antibacterial, anti-biofilm, cytotoxic as well as photo catalytic agent.


10.5219/1604 ◽  
2021 ◽  
Vol 15 ◽  
pp. 995-1004
Author(s):  
Aleš Vavřiník ◽  
Kateřina Štůsková ◽  
Adrian Alumbro ◽  
Methusela Perrocha ◽  
Lenka Sochorová ◽  
...  

The presented work aimed to study the inhibition using nanoparticles produced by the green synthesis in selected acetic acid and lactic acid bacteria, which are related to viticulture. The degree of ability to eliminate silver particles produced by green syntheses was determined using the plate method on Petri dishes. This is done using two different approaches - the method of direct application of the solution to the surface of the inoculated medium (determination of inhibition zones) and the method of application using nanoparticles to the inoculated medium. Gluconobacter oxydans (CCM 3618) and Acetobacter aceti (CCM 3620T) were studied from acet acetic bacteria. The lactic acid bacteria were Lactobacillus brevis (CCM 1815) and Pediococcus damnosus (CCM 2465). The application of silver nanoparticles was always in concentrations of 0, 0.0625, 0.125, 0.25, 0.5, and 1 g.L-1. All applied concentrations of silver nanoparticles showed an inhibitory effect on the monitored microorganisms. Silver particles could be used in wine technology for their antibacterial effects, mainly to inhibit microorganisms during vinification, as a substitute for sulfur dioxide.


2001 ◽  
Vol 16 (10) ◽  
pp. 2934-2938 ◽  
Author(s):  
G. Compagnini ◽  
M. M. Fragal´ ◽  
L. D'Urso ◽  
C. Spinella ◽  
O. Puglisi

Silver nanoparticles (10–20 nm) embedded into silica thin films have been obtained through the use of a silver organometallic precursor compound dissolved in Spin-On-Glass and subsequently spinned onto suitable substrates. In this paper we present a study of the shape, size, and distribution of silver particles through the use of microscopes, x-ray diffraction, and optical extinction. It has been observed that the obtained films are stable for annealing up to 500 °C with a progressive degradation above this temperature. Furthermore it is possible to obtain high-density silver particles up to 15% in weight without affecting the cluster size and shape.


2006 ◽  
Vol 23 (5) ◽  
pp. 842-846 ◽  
Author(s):  
Min-Jae Yoon ◽  
Jung-Hyun In ◽  
Hyeon-Cheol Lee ◽  
Chang-Ha Lee

Sign in / Sign up

Export Citation Format

Share Document