FOWLP Technology as an Wafer Level System in Packaging (SiP) Solution

Author(s):  
Lewis(In Soo) Kang

The market of Connectivity, Internet of Things (IoT), Wearable and Smart industrial applications leads Fan Out Wafer Level Package (FOWLP) technologies to a promising solution to overcome the limitation of conventional wafer level package, flip chip package and wire bonding package in terms of the solution of low cost, high performance and smaller form factor packaging. Moreover, FOWLP technology can be extended to system-in-package (SiP) area, such as multi chip 2D package and 3D stack package types. nepes Corporation has developed several advanced package platforms such as single, multi dies and 2D, 3D packaging by using FOWLP and embedding technologies. To fulfill SiP (system-in-package) with FOWLP, several dies and components have been embedded into one package which offers 40~90 % of volumetric shrink compared to the current module system with the flexibility of product design for end users. 3D package technology of PoP (Package on Package) structure will be introduced for communication module and system control application.

2010 ◽  
Vol 7 (3) ◽  
pp. 146-151 ◽  
Author(s):  
Zhaozhi Li ◽  
Sangil Lee ◽  
Brian J. Lewis ◽  
Paul N. Houston ◽  
Daniel F. Baldwin ◽  
...  

The industry has witnessed the adoption of the flip chip for its low cost, small form factor, high performance, and great I/O flexibility. As three-dimensional (3D) packaging technology moves to the forefront, the flip chip to wafer integration, which is also a silicon-to-silicon assembly, is gaining more and more popularity. No flow underfill is of special interest for the wafer level flip chip assembly, as it can dramatically reduce the process time and the cost per package, due to the reduction in the number of process steps as well as the dispenser and cure oven that would otherwise be necessary for the standard capillary underfill process. This paper introduces the development of a no flow underfill process for a sub-100 micron pitch flip chip to CSP wafer level assembly. Challenges addressed include the no flow underfill reflow profile study, underfill dispense amount study, chip floating control, underfill voiding reduction, and yield improvement. Also, different no flow underfill candidates were investigated to determine the best performing processing material.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000548-000553
Author(s):  
Zhaozhi Li ◽  
Brian J. Lewis ◽  
Paul N. Houston ◽  
Daniel F. Baldwin ◽  
Eugene A. Stout ◽  
...  

Three Dimensional (3D) Packaging has become an industry obsession as the market demand continues to grow toward higher packaging densities and smaller form factor. In the meanwhile, the 3D die-to-wafer (D2W) packaging structure is gaining popularity due to its high manufacturing throughput and low cost per package. In this paper, the development of the assembly process for a 3D die-to-wafer packaging technology, that leverages the wafer level assembly technique and flip chip process, is introduced. Research efforts were focused on the high-density flip chip wafer level assembly techniques, as well as the challenges, innovations and solutions associated with this type of 3D packaging technology. Processing challenges and innovations addressed include flip chip fluxing methods for very fine-pitch and small bump sizes; wafer level flip chip assembly program creation and yield improvements; and set up of the Pb-free reflow profile for the assembled wafer. 100% yield was achieved on the test vehicle wafer that has totally 1,876 flip chip dies assembled on it. This work has demonstrated that the flip chip 3D die-to-wafer packaging architecture can be processed with robust yield and high manufacturing throughput, and thus to be a cost effective, rapid time to market alternative to emerging 3D wafer level integration methodologies.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000708-000735 ◽  
Author(s):  
Zhaozhi Li ◽  
John L. Evans ◽  
Paul N. Houston ◽  
Brian J. Lewis ◽  
Daniel F. Baldwin ◽  
...  

The industry has witnessed the adoption of flip chip for its low cost, small form factor, high performance and great I/O flexibility. As the Three Dimensional (3D) packaging technology moves to the forefront, the flip chip to wafer integration, which is also a silicon to silicon assembly, is gaining more and more popularity. Most flip chip packages require underfill to overcome the CTE mismatch between the die and substrate. Although the flip chip to wafer assembly is a silicon to silicon integration, the underfill is necessary to overcome the Z-axis thermal expansion as well as the mechanical impact stresses that occur during shipping and handling. No flow underfill is of special interest for the wafer level flip chip assembly as it can dramatically reduce the process time as well as bring down the average package cost since there is a reduction in the number of process steps and the dispenser and cure oven that would be necessary for the standard capillary underfill process. Chip floating and underfill outgassing are the most problematic issues that are associated with no flow underfill applications. The chip floating is normally associated with the size/thickness of the die and volume of the underfill dispensed. The outgassing of the no flow underfill is often induced by the reflow profile used to form the solder joint. In this paper, both issues will be addressed. A very thin, fine pitch flip chip and 2x2 Wafer Level CSP tiles are used to mimic the assembly process at the wafer level. A chip floating model will be developed in this application to understand the chip floating mechanism and define the optimal no flow underfill volume needed for the process. Different reflow profiles will be studied to reduce the underfill voiding as well as improve the processing yield. The no flow assembly process developed in this paper will help the industry understand better the chip floating and voiding issues regarding the no flow underfill applications. A stable, high yield, fine pitch flip chip no flow underfill assembly process that will be developed will be a very promising wafer level assembly technique in terms of reducing the assembly cost and improving the throughput.


2000 ◽  
Author(s):  
Y. T. Lin ◽  
P. J. Tang ◽  
K. N. Chiang

Abstract The demands of electronic packages toward lower profile, lighter weight, and higher density of I/O lead to rapid expansion in the field of flip chip, chip scale package (CSP) and wafer level packaging (WLP) technologies. The urgent needs of high I/O density and good reliability characteristic lead to the evolution of the ultra high-density type of non-solder interconnection such as the wire interconnect technology (WIT). The new technology using copper posts to replace the solder bumps as interconnections shown a great improvement in the reliability life. Moreover, this type of wafer level package could achieve higher I/O density, as well as ultra fine pitch. This research will focus on the reliability analysis of the WIT package structures in material selection and structural design, etc. This research will use finite element method to analyze the physical behavior of packaging structures under thermal cycling condition to compare the reliability characteristics of conventional wafer level package and WIT packages. Parametric studies of specific parameters will be performed, and the plastic and temperature dependent material properties will be applied to all of the models.


2010 ◽  
Vol 2010 (DPC) ◽  
pp. 1-20
Author(s):  
Geun Sik Kim ◽  
Kai Liu ◽  
Flynn Carson ◽  
Seung Wook Yoon ◽  
Meenakshi Padmanathan

IPD technology was originally developed as a way to replace bulky discrete passive components, but it¡¯s now gaining popularity in ESD/EMI protection applications, as well as in RF, high-brightness LED silicon sub-mounts, and digital and mixed-signal devices. Already well known as a key enabler of system-in-packages (SiPs), IPDs enable the assembly of increasingly complete and autonomous systems with the integration of diverse electronic functions such as sensors, RF transceivers, MEMS, power amplifiers, power management units, and digital processors. The application area for IPD will continue to evolve, especially as new packaging technology, such as flipchip, 3D stacking, wafer level packaging become available to provide vertical interconnections within the IPD. New applications like silicon interposers will become increasingly significant to the market. Currently the IPD market is being driven primarily by RF or wireless packages and applications including, but not limited to, cell phones, WiFi, GPS, WiMAX, and WiBro. In particular, applications and products in the emerging RF CMOS market that require a low cost, smaller size, and high performance are driving demand. In order to get right products in size and performance, packaging design and technology should be considered in device integration and implemented together in IPD designs. In addition, a comprehensive understanding of electrical and mechanical properties in component and system level design is important. This paper will highlight some of the recent advancements in SiP technology for IPD and integration as well as what is developed to address future technology requirements in IPD SiP solutions. The advantage and applications of SiP solution for IPD will be presented with several examples of IPD products. The design, assembly and packaging challenges and performance characteristics will be also discussed.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 001486-001519
Author(s):  
Curtis Zwenger ◽  
JinYoung Khim ◽  
YoonJoo Khim ◽  
SeWoong Cha ◽  
SeungJae Lee ◽  
...  

The tremendous growth in the mobile handset, tablet, and networking markets has been fueled by consumer demand for increased mobility, functionality, and ease of use. This, in turn, has been driving an increase in functional convergence and 3D integration of IC devices, resulting in the need for more complex and sophisticated packaging techniques. A variety of advanced IC interconnect technologies are addressing this growing need, such as Thru Silicon Via (TSV), Chip-on Chip (CoC), and Package-on-Package (PoP). In particular, the emerging Wafer Level Fan-Out (WLFO) technology provides unique and innovative extensions into the 3D packaging realm. Wafer Level Fan-Out is a package technology designed to provide increased I/O density within a reduced footprint and profile for low density single & multi-die applications at a lower cost. The improved design capability of WLFO is due, in part, to the fine feature capabilities associated with wafer level packaging. This can allow much more aggressive design rules to be applied compared to competing laminate-based technologies. In addition, the unique characteristics of WLFO enable innovative 3D structures to be created that address the need for IC integration in emerging mobile and networking applications. This paper will review the development of WLFO and its extension into unique 3D structures. In addition, the advantages of these WLFO designs will be reviewed in comparison to current competing packaging technologies. Process & material characterization, design simulation, and reliability data will be presented to show how WLFO is poised to provide robust, reliable, and low cost 3D packaging solutions for advanced mobile and networking products.


2018 ◽  
Vol 2018 (1) ◽  
pp. 000125-000128
Author(s):  
Ruby Ann M. Camenforte ◽  
Jason Colte ◽  
Richard Sumalinog ◽  
Sylvester Sanchez ◽  
Jaimal Williamson

Abstract Overmolded Flip Chip Quad Flat No-lead (FCQFN) is a low cost flip chip on leadframe package where there is no need for underfill, and is compatible with Pb free or high Pb metallurgy. A robust leadframe design, quality solder joint formation and an excellent molding process are three factors needed to assemble a high performance FCQFN. It combines the best of both wirebonded QFN and wafer chip scale devices. For example, wafer chip scale has low resistance, but inadequate thermal performance (due to absence of thermal pad), whereas wirebonded QFN has good thermal performance (i.e., heat dissipated through conductive die attach material, through the pad and to the board) but higher resistance. Flip chip QFN combines both positive aspects – that is: low resistance and good thermals. One of the common defects for molded packages across the semiconductor industry is the occurrence of mold voiding as this can potentially affect the performance of a device. This paper will discuss how mold voiding is mitigated by understanding the mold compound behavior on flip chip QFN packages. Taking for example the turbulent mold flow observed on flip chip QFN causing mold voids. Mold compound material itself has a great contribution to mold voids, hence defining the correct attributes of the mold compound is critical. Altering the mold compound property to decrease the mold compound rheology is a key factor. This dynamic interaction between mold compound and flip chip QFN package configuration is the basis for a series of design of experiments using a full factorial matrix. Key investigation points are establishing balance in mold compound chemistry allowing flow between bump pitch, as well as the mold compound rheology, where gelation time has to be properly computed to allow flow across the leadframe. Understanding the flow-ability of mold compound for FCQFN, the speed of flow was optimized to check on its impact on mold voids. Mold airflow optimization is also needed to help fill in tighter bump spacing but vacuum-on time needs to be optimized as well.


Author(s):  
Raquel Pinto ◽  
André Cardoso ◽  
Sara Ribeiro ◽  
Carlos Brandão ◽  
João Gaspar ◽  
...  

Microelectromechanical Systems (MEMS) are a fast growing technology for sensor and actuator miniaturization finding more and more commercial opportunities by having an important role in the field of Internet of Things (IoT). On the same note, Fan-out Wafer Level Packaging (FOWLP), namely WLFO technology of NANIUM, which is based on Infineon/ Intel eWLB technology, is also finding further applications, not only due to its high performance, low cost, high flexibility, but also due to its versatility to allow the integration of different types of components in the same small form-factor package. Despite its great potential it is still off limits to the more sensitive components as micro-mechanical devices and some type of sensors, which are vulnerable to temperature and pressure. In the interest of increasing FOWLP versatility and enabling the integration of MEMS, new methods of assembling and processing are continuously searched for. Dielectrics currently used for redistribution layer construction need to be cured at temperatures above 200°C, making it one of the major boundary for low temperature processing. In addition, in order to accomplish a wide range of dielectric thicknesses in the same package it is often necessary to stack very different types of dielectrics with impact on bill of materials complexity and cost. In this work, done in cooperation with the International Iberian Nanotechnology Laboratory (INL), we describe the implementation of commercially available SU-8 photoresist as a structural material in FOWLP, allowing lower processing temperature and reduced internal package stress, thus enabling the integration of components such as MEMS/MOEMS, magneto-resistive devices and micro-batteries. While SU-8 photoresist was first designed for the microelectronics industry, it is currently highly used in the fabrication of microfluidics as well as microelectromechanical systems (MEMS) and BIO-MEMS due to its high biocompatibility and wide range of available thicknesses in the same product family. Its good thermal and chemical resistance and also mechanical and rheological properties, make it suitable to be used as a structural material, and moreover it cures at 150°C, which is key for the applications targeted. Unprecedentedly, SU-8 photoresist is tested in this work as a structural dielectric for the redistribution layers on 300mm fan-out wafers. Main concerns during the evaluation of the new WLFO dielectric focused on processability quality; adhesion to multi-material substrate and metals (copper, aluminium, gold, ¦); between layers of very different thicknesses; and overall reliability. During preliminary runs, processability on 300 mm fan-out wafers was evaluated by testing different coating and soft bake conditions, exposure settings, post-exposure parameters, up to developing setup. The outputs are not only on process conditions and results but also on WLFO design rules. For the first time, a set of conditions has been defined that allows processing SU-8 on WLFO, with thickness values ranging from 1 um to 150 um. The introduction of SU-8 in WLFO is a breakthrough in this fast-growing advanced packaging technology platform as it opens vast opportunities for sensor integration in WLP technology.


2016 ◽  
Vol 2016 (S1) ◽  
pp. S1-S46
Author(s):  
Ron Huemoeller

Over the past few years, there has been a significant shift from PCs and notebooks to smartphones and tablets as drivers of advanced packaging innovation. In fact, the overall packaging industry is doing quite well today as a result, with solid growth expected to create a market value in excess of $30B USD by 2020. This is largely due to the technology innovation in the semiconductor industry continuing to march forward at an incredible pace, with silicon advancements in new node technologies continuing on one end of the spectrum and innovative packaging solutions coming forward on the other in a complementary fashion. The pace of innovation has quickened as has the investments required to bring such technologies to production. At the packaging level, the investments required to support the advancements in silicon miniaturization and heterogeneous integration have now reached well beyond $500M USD per year. Why has the investment to support technology innovation in the packaging community grown so much? One needs to look no further than the complexity of the most advanced package technologies being used today and coming into production over the next year. Advanced packaging technologies have increased in complexity over the years, transitioning from single to multi-die packaging, enabled by 3-dimensional integration, system-in-package (SiP), wafer-level packaging (WLP), 2.5D/3D technologies and creative approached to embedding die. These new innovative packaging technologies enable more functionality and offer higher levels of integration within the same package footprint, or even more so, in an intensely reduced footprint. In an industry segment that has grown accustomed to a multitude of package options, technology consolidation seems evident, producing “The Big Five” advanced packaging platforms. These include low-cost flip chip, wafer-level chip-scale package (WLCSP), microelectromechanical systems (MEMS), laminate-based advanced system-in-package (SiP) and wafer-based advanced SiP designs. This presentation will address ‘The Big Five’ packaging platforms and how they are adding value to the Semiconductor Industry.


Sign in / Sign up

Export Citation Format

Share Document