Photostabilization of i-line Photoresist and ARC Layer

2012 ◽  
Vol 2012 (1) ◽  
pp. 000694-000701
Author(s):  
Zeliha YILMAZ ◽  
Murat PAK ◽  
Sema İMRAHORILYAS ◽  
Aylin ERSOY

Stabilization after the lithography process is crucial in order to prevent deformation of photoresist patterns by other thermal processes used in semiconductor production. UV hardening is capable of minimizing negative effects of thermal processes such as rounded shaped lines; line width widening or shrinkage and CD shift. The amount of UV energy absorbed and final process temperature are important process parameters; which effect directly the degree of cross-linking. So, this paper examines optimization of process parameters such as the ramp rate, which is the tangent of the temperature-time curve (°C/sec) and the final temperature. Also the ramp rate indicates the time; that wafer is exposed to the high degree of UV energy. Process parameters are optimised with respect to the improvement of etch selectivity, decrease of the CD shift. Profile photos have been taken with Scanning Electron Microscope. In the experiments, the novolak based i-line photoresist and ICON-7 as anti reflecting coating are used for the lithography process. Many variables have been taken into consideration while determining optimum process parameters. These are resist thickness, type of the surface layer of wafer, magnitude of the critical dimension (>1 μm & < 1 μm ) and the size of the open area on the reticle used during exposure.

2019 ◽  
Vol 13 (1) ◽  
pp. 69-73 ◽  
Author(s):  
Ram Balak Mahto ◽  
Mukesh Yadav ◽  
Soumya Sasmal ◽  
Biswnath Bhunia

Background: Pectinase enzyme has immense industrial prospects in the food and beverage industries. </P><P> Objective: In our investigation, we find out the optimum process parameters suitable for better pectinase generation by Bacillus subtilis MF447840.1 using submerged fermentation. </P><P> Method: 2% (OD600 nm = 0.2) of pure Bacillus subtilis MF447840.1 bacterial culture was inoculated in sterile product production media. The production media components used for this study were 1 g/l of pectin, 2 g/l of (NH4)2SO4, 1 g/l of NaCl, 0.25 g/l of K2HPO4, 0.25 g/l of KH2PO4 and 1 g/l of MgSO4 for pectinase generation. We reviewed all recent patents on pectinase production and utilization. The various process parameters were observed by changing one variable time method. </P><P> Results: The optimum fermentation condition of different parameters was noticed to be 5% inoculums, 25% volume ratio, temperature (37°C), pH (7.4) and agitation rate (120 rpm) following 4 days incubation. </P><P> Conclusion: Maximum pectinase generation was noticed as 345 ± 12.35 U following 4 days incubation.


2019 ◽  
Vol 16 (1) ◽  
pp. 43-57 ◽  
Author(s):  
Reddy Sreenivasulu ◽  
Chalamalasetti SrinivasaRao

Abstract Burr formation during machining process is a vital role in the assembly lines, even though it is a non value added process but also care should be taken while machining due to non avoiding output generated at the end of material removal process. At present almost all manufacturing sectors faces lot of problems due to these issues and invest more money towards deburring still advanced manufacturing methods available. So, complete burr removal is not possible and only thing is reducing utmost by applying better optimizing techniques, to develop good mechanization methods, selecting optimum process parameters and their conditions. The aim this paper deals about research methods implemented by earlier authors on burr formation especially in drilling. The reason why the present authors selected the drilling is number of automotive and aircraft engineers struggling during structural building works because of these burrs wherever precise measurement needed. In this connection, the authors concentrate their study on previous researcher works related to investigations on experimentation, developing new theoretical mechanisms to minimize burrs, adapt a new technologies available to modify drill bit geometries such that improvement in the minimization of burrs. Finally found that research contributions by changing their drill bit geometry and cutting process parameters have been focused on utilizing the methodologies, changing time to time. In analyzing the performance characteristics with that of input process parameters, several mathematical and empirical models were developed by many researchers so far in their works. Efforts have been made in the direction of optimization of process parameters in drilling for minimizing burr size.


2020 ◽  
Vol 9 (1) ◽  
pp. 92-96 ◽  
Author(s):  
Abdollah Saboori ◽  
Mostafa Toushekhah ◽  
Alberta Aversa ◽  
Manuel Lai ◽  
Mariangela Lombardi ◽  
...  

AbstractDirected energy deposition (DED) process is recognized as an alternative technology to produce the complex-shape AISI 316L components. The critical production step in this technology is the optimization of process parameters that can directly affect the final properties of the components. To optimize the process parameters, the residual defects of specimens produced with different combinations of process parameters are evaluated, and the optimum condition is chosen. Therefore, the residual defects assessment is a vital step in finding the optimum process parameters; therefore, this evaluation should be carried out carefully. One of the main issues in the production of AISI 316L by DED process is oxidation during the process that should be considered besides the other defects such as porosity and cracks. However, the identification between the oxides and porosities is not an easy task, and so this study aims to provide more clear insight into the evaluation of pores and oxides in DED 316L samples. The outcomes of this work show that at the best process parameters suitable for a porosity-free sample, there are some oxides that can be misinterpreted as porosity and consequently deteriorate the mechanical properties of the dense sample.


2014 ◽  
Vol 592-594 ◽  
pp. 636-640
Author(s):  
K.N. Balan ◽  
S. Manimaran ◽  
M.A. Essam Ahamed ◽  
Amaladas John Rajan

Detonation gun spray coating method (D-Spray) is an effective method of coating process [4]. The surface property of material will be enhanced by deposition of coating powders such as metal oxides and ceramics like aluminium oxides, tungsten carbide, nickel chromium etc. which improves micro hardness, corrosion and wear resistant resistance property. This coating process is applicable in different engineering sectors such as aviation industry, marine industry, biomedical industry etc., In this Experimental study the Process parameter optimization of D-spray coating process with different coating powder was done by Taguchi design of experiment [2] and interrelationships among multiple response was analysed with Grey relation Analysis [2] in order to find the optimized processing conditions and to get higher quality of coating. Micro hardness Wear resistant, Surface roughness are the multiple responses estimated for various combinations of parameters and the optimum process parameters were obtained.


2020 ◽  
Vol 22 (4) ◽  
pp. 1371-1380
Author(s):  
Mustapha Arab ◽  
Mokhtar Zemri

AbstractFriction Stir Welding (FSW) was carried out on Aluminum Alloy 6082-T6 plates with dimensions of 200 × 70 × 2 mm. Design of Experiment (DOE) was applied to determine the most important factors which influence the Ultimate Tensile Strength (UTS) and Hardness (HV) of AA 6082-T6 joints produced by Friction Stir Welding (FSW). Effect of two factors which include tool rotational speed and welding speed on (UTS, HV) were investigated by Taguchi method using L9 orthogonal array to find the optimum process parameters. An analysis of variance (ANOVA) was carried out to determine which of the selected factors are more significant on both of responses, the optimum parameters for the higher UTS it found by using a rotational speed of 1400 rpm and 125 mm/min for the welding speed, also 1400 rpm and 160 mm/min to maximize Hardness (HV).


2014 ◽  
Vol 9 (3) ◽  
pp. 155892501400900 ◽  
Author(s):  
Rajkumar Govindaraju ◽  
Srinivasan Jagannathan ◽  
Mohanbharathi Chinnasamy ◽  
P. Kandhavadivu

The present study focused optimizing the process parameters of compression molding with respect to mechanical properties for fabrication of wool fiber-reinforced polypropylene composites. An experiment was designed using the Box-Behnken method with three levels and three variables using temperature, time, and pressure, as independent variables and tensile, flexural, and impact strengths as dependent variables. The process conditions were optimized using response surface methodology with the Box-Behnken experimental design. Regression equations were obtained to analyze tensile strength, flexural strength, and impact strength and the optimum process parameters were identified. The results show that the optimum conditions for compression molding are 176°C, 7 min, and 35 bar.


2012 ◽  
Vol 229-231 ◽  
pp. 382-386
Author(s):  
Jian Bin Wang ◽  
Ji Shu Yin

The optimization research of process parameters for big power Laser cladding valve parts, is a research focus of modern surface hardening technology. The article discussed in detail for solving the optimum process parameters of Laser cladding for the selection approach of strategy of genetic algorithm, the quantitative relationship model was established between process parameters and the valve parts property using neural network method , which process parameters are laser power (P), scanning speed (V), powder feeding rate (G), scan spacing (D) and thickness ( ) etc., the best configuration program of Genetic Algorithm control parameters has been obtain by means of the parameters encoding、initial group setting、fitness function design,genetic operation design and algorithm control parameters setting. The optimization of process parameters is obtained to fit the Laser cladding technology by using genetic algorithm toolbox in the MATLAB environment, and the optimization goal of the valve parts property has also been achieved. Practice has proved that the optimal process parameters are correct by the genetic algorithm , and has a very good production practice guide.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1039
Author(s):  
Yu Zhang ◽  
Hongjun Ni ◽  
Shuaishuai Lv ◽  
Xingxing Wang ◽  
Songyuan Li ◽  
...  

Aluminum dross is produced in the process of industrial production and regeneration of aluminum. Currently, the main way to deal with aluminum dross is stacking and landfilling, which aggravates environmental pollution and resource waste. In order to find a green and environmental protection method for the comprehensive utilization, the aluminum dross was used as raw materials to prepare sintered brick. Firstly, the raw material ratio, molding pressure and sintering process were determined by single factor test and orthogonal test, and the mechanism of obvious change of mechanical strength of sintered brick was studied by XRD and SEM. The experimental results show that, the optimal formula of sintered brick is 50% aluminum dross, 37.50% engineering soil and 12.50% coal gangue. The optimum process parameters are molding pressure 10 MPa, heating rate 8 °C/ min, sintering temperature 800 °C, holding time 60 min. The samples prepared under the above formula and process parameters present outstanding performance, and the compressive strength, flexural strength and water absorption rate are 16.21 MPa, 3.42 MPa and 17.12% respectively.


2014 ◽  
Vol 592-594 ◽  
pp. 321-325 ◽  
Author(s):  
Varun R. Dalve ◽  
R. Keshavamurthy ◽  
G. Ugrasen ◽  
C.P.S. Prakash

This paper focuses on optimization of process parameters for wire electric discharge machining (WEDM) of In-situ Al7075-TiB2 metal matrix composites processed by stir casting technique using Taguchi method of experimental design. The effect of pulse-on, pulse-off, current, and bed speed on dimensional accuracy, surface roughness and volumetric material removal rate (VMRR) have been investigated keeping voltage and flush rate constant. L27 orthogonal array of Taguchi technique was used for experimental trials. The optimum process parameters have been identified. Significant process parameters were identified from the analysis of variance (ANOVA). Further, verification experiment has been carried out to confirm the performance of optimum process parameters.


Author(s):  
Nixon Kuruvila ◽  
H. V. Ravindra

Wire-cut Electro Discharge Machining (WEDM) is a special form of conventional EDM process in which electrode is a continuously moving conductive wire. The present study aims at determining parametric influence and optimum process parameters of Wire-EDM using Taguchi’s Technique and Genetic algorithm. The variation of the performance parameters with machining parameters was mathematically modeled by Regression analysis method. The objective functions are Dimensional Accuracy (DA) and Volumetric Material Removal Rate (VMRR). Experiments were designed as per Taguchi’s L16 Orthogonal Array (OA) where in Pulse-on duration, Current, Pulse-off duration, Bed-speed and Flushing rate have been considered as the important input parameters. The matrix experiments were conducted for the material Oil Hardened Non Shrinking Steel (OHNS) having the thickness of 40 mm. The results of the study reveals that among the machining parameters it is preferable to go in for smaller pulse-off duration for achieving over all good performance. Regarding MRR, OHNS is to be eroded with medium pulse-off duration and higher flush rate. Finally, the validation exercise performed with the optimum levels of the process parameters. The results confirm the efficiency of the approach employed for optimization of process parameters in this study.


Sign in / Sign up

Export Citation Format

Share Document