Formation of Through-Glass-Via (TGV) by Photo-Chemical Etching with High Selectivity

2012 ◽  
Vol 2012 (1) ◽  
pp. 000785-000792
Author(s):  
Zingway Pei ◽  
Jui-Po Sun ◽  
Hsin-Chen Lai ◽  
Pei-Jer Tzeng ◽  
Cha-Hsin Lin ◽  
...  

In this work, we utilize a photo-chemical etching (PCE) method to form through-glass-via (TGV). The PCE is a low cost, damage-free and potentially large-area method for TGV formation. An ultra-violet (355 nm) pulse laser was used to illuminate the glass surface. The illuminated region will crystallize after thermal annealing in a furnace. The crystallized glass shows much faster etching rate than the amorphous region in HF solution. For a relatively thick (600 nm) glass, a via-hole with diameter of around 60 μm was demonstrated in laser energy of 11 J/cm2. No laser damages were observed. In comparison, at least 10 times higher energy was required to drill a glass directly. Micro-cracks were form around the glass-via. In addition, a 40 selectivity was achieved to the crystallized and amorphous region. This simple and useful method paves a straight road for 3-D integration.

Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3179
Author(s):  
Qi Wang ◽  
Kehong Zhou ◽  
Shuai Zhao ◽  
Wen Yang ◽  
Hongsheng Zhang ◽  
...  

Realizing the anisotropic deep trenching of GaN without surface damage is essential for the fabrication of GaN-based devices. However, traditional dry etching technologies introduce irreversible damage to GaN and degrade the performance of the device. In this paper, we demonstrate a damage-free, rapid metal-assisted chemical etching (MacEtch) method and perform an anisotropic, deep trenching of a GaN array. Regular GaN microarrays are fabricated based on the proposed method, in which CuSO4 and HF are adopted as etchants while ultraviolet light and Ni/Ag mask are applied to catalyze the etching process of GaN, reaching an etching rate of 100 nm/min. We comprehensively explore the etching mechanism by adopting three different patterns, comparing a Ni/Ag mask with a SiN mask, and adjusting the etchant proportion. Under the catalytic role of Ni/Ag, the GaN etching rate nearby the metal mask is much faster than that of other parts, which contributes to the formation of deep trenches. Furthermore, an optimized etchant is studied to restrain the disorder accumulation of excessive Cu particles and guarantee a continuous etching result. Notably, our work presents a novel low-cost MacEtch method to achieve GaN deep etching at room temperature, which may promote the evolution of GaN-based device fabrication.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Youngsoon Jeong ◽  
Chanwoo Hong ◽  
Yeong Hun Jung ◽  
Rashida Akter ◽  
Hana Yoon ◽  
...  

Abstract Metal-assisted chemical etching (MACE) has been widely explored for developing silicon (Si)-based energy and optical devices with its benefits for low-cost and large-area fabrication of Si nanostructures of high aspect ratios. Surface structures and properties of Si nanostructures fabricated through MACE are significantly affected by experimental and environmental conditions of etchings. Herein, we showed that surfaces and interfacial energy states of fabricated Si nanowires can be critically affected by oxidants of MACE etching solutions. Surfaces of fabricated Si nanowires are porous and their tips are fully covered with lots of Si nano-sized grains. Strongly increased photoluminescence (PL) intensities, compared to that of the crystalline Si substrate, are observed for MACE-fabricated Si nanowires due to interfacial energy states of Si and SiOx of Si nano-sized grains. These Si grains can be completely removed from the nanowires by an additional etching process of the anisotropic chemical etching (ACE) of Si to taper the nanowires and enhance light trapping of the nanowires. Compared with the MACE-fabricated Si nanowires, ACE-fabricated tapered Si nanowires have similar Raman and PL spectra to those of the crystalline Si substrate, indicating the successful removal of Si grains from the nanowire surfaces by the ACE process.


Nanoscale ◽  
2015 ◽  
Vol 7 (36) ◽  
pp. 14807-14812 ◽  
Author(s):  
D. L. Mafra ◽  
T. Ming ◽  
J. Kong

We explore a CVD transfer technique that abandons both the intermediate membrane and chemical etching of the metal catalyst. This method is fast, simple and is a necessary route towards roll-to-roll production of large-area CVD graphene sheets at high quality and low cost. Such integration is a step forward to the economical and industrial scale production of graphene and enables technology for flexible electronics and optoelectronics.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


2006 ◽  
Vol 90 (20) ◽  
pp. 3557-3567 ◽  
Author(s):  
U. Gangopadhyay ◽  
K.H. Kim ◽  
S.K. Dhungel ◽  
U. Manna ◽  
P.K. Basu ◽  
...  

2021 ◽  
Author(s):  
Naeime Salandari-Jolge ◽  
Ali A. Ensafi ◽  
Behzad Rezaei

Dipyridamole is a prescribed medication used to treat cardiovascular diseases, angina pectoris, imaging tests for heart patients, and myocardial infarction. Therefore, high selectivity and sensitivity, low cost, and high-performance speed...


2021 ◽  
Vol 13 (15) ◽  
pp. 8244
Author(s):  
Francesca Cirisano ◽  
Michele Ferrari

Highly hydrophobic and superhydrophobic materials obtained from recycled polymers represent an interesting challenge to recycle and reuse advanced performance materials after their first life. In this article, we present a simple and low-cost method to fabricate a superhydrophobic surface by employing polytetrafluoroethylene (PTFE) powder in polystyrene (PS) dispersion. With respect to the literature, the superhydrophobic surface (SHS) was prepared by utilizing a spray- coating technique at room temperature, a glass substrate without any further modification or thermal treatment, and which can be applied onto a large area and on to any type of material with some degree of fine control over the wettability properties. The prepared surface showed superhydrophobic behavior with a water contact angle (CA) of 170°; furthermore, the coating was characterized with different techniques, such as a 3D confocal profilometer, to measure the average roughness of the coating, and scanning electron microscopy (SEM) to characterize the surface morphology. In addition, the durability of SH coating was investigated by a long-water impact test (raining test), thermal treatment at high temperature, an abrasion test, and in acidic and alkaline environments. The present study may suggest an easy and scalable method to produce SHS PS/PTFE films that may find implementation in various fields.


2018 ◽  
Vol 9 ◽  
pp. 1582-1593 ◽  
Author(s):  
Silvia Rizzato ◽  
Elisabetta Primiceri ◽  
Anna Grazia Monteduro ◽  
Adriano Colombelli ◽  
Angelo Leo ◽  
...  

Colloidal lithography is an innovative fabrication technique employing spherical, nanoscale crystals as a lithographic mask for the low cost realization of nanoscale patterning. The features of the resulting nanostructures are related to the particle size, deposition conditions and interactions involved. In this work, we studied the absorption of polystyrene spheres onto a substrate and discuss the effect of particle–substrate and particle–particle interactions on their organization. Depending on the nature and the strength of the interactions acting in the colloidal film formation, two different strategies were developed in order to control the number of particles on the surface and the interparticle distance, namely changing the salt concentration and absorption time in the particle solution. These approaches enabled the realization of large area (≈cm2) patterning of nanoscale holes (nanoholes) and nanoscale disks (nanodisks) of different sizes and materials.


Sign in / Sign up

Export Citation Format

Share Document