scholarly journals SeXX and COVID-19: tussle between the two

2020 ◽  
Vol 90 (4) ◽  
Author(s):  
Ashlesh Patil ◽  
Jaya Prasad Tripathy ◽  
Vishwajit Deshmukh ◽  
Bharat Sontakke ◽  
Satyendra C. Tripathi

Novel coronavirus disease (COVID-19) has affected nearly 7 million individuals and claimed more than 0.4 million lives to date. There are several reports of gender differences related to infection and death due to COVID-19. This raises important questions such as “Whether there are differences based on gender in risk and severity of infection or mortality rate?” and “What are the biological explanation and mechanisms underlying these differences?” Emerging evidences have proposed sex-based immunological, genetic, and hormonal differences to explain this ambiguity. Besides biological differences, women have also faced social inequities and economic hardships due to this pandemic. Several recent studies have shown that independent of age males are at higher risk for severity and mortality in COVID-19 patients. Although susceptibility to SARS-CoV-2 was found to be similar across both genders in several disease cohorts, a disproportionate death ratio in men can be partly explained by the higher burden of pre-existing diseases and occupational exposures among men. At immunological point of view, females can engage a more active immune response, which may protect them and counter infectious diseases as compared to men. This attribute of better immune responses towards pathogens is thought to be due to high estrogen levels in females. Here we review the current knowledge about sex differences in susceptibility, the severity of infection and mortality, host immune responses, and the role of sex hormones in COVID-19 disease.

Author(s):  
Ashlesh Patil ◽  
Jaya Prasad Tripathy ◽  
Vishwajit Deshmukh ◽  
Bharat Sontakke ◽  
Satyendra C. Tripathi

Novel coronavirus disease (COVID-19) has affected nearly 7 million individuals and claimed more than 0.4 million lives to date. There are several reports of gender differences related to infection and death due to COVID-19. This raises important questions such as “Whether there are differences based on gender in risk and severity of infection or mortality rate?” and “What are the biological explanation and mechanisms underlying these differences?” Emerging evidence has proposed sex-based immunological, genetic, and hormonal differences to explain this ambiguity. Besides biological differences, women have also faced social inequities and economic hardships due to this pandemic. Several recent studies have shown that independent of age males are at higher risk for severity and mortality in COVID-19 patients. Although susceptibility to SARS-CoV-2 was found to be similar across both genders in several disease cohorts, a disproportionate death ratio in men can be partly explained by the higher burden of pre-existing diseases and occupational exposures among men. From an immunological point of view, females can engage a more active immune response, which may protect them and counter infectious diseases as compared to men. This attribute of better immune responses towards pathogens is thought to be due to high estrogen levels in females. Here we review the current knowledge about sex differences in susceptibility, the severity of infection and mortality, host immune responses, and the role of sex hormones in COVID-19 disease.


Author(s):  
Nandini Eswaran ◽  
Shwetha Krishna

Background: The emergence and the spread of the novel coronavirus or the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a devastating impact on the economy and has become a pressing issue globally. Due to the significant increase in the number of confirmed cases and death tolls worldwide, and certain countries reporting second waves, there is an immediate need for an effective vaccine or other therapeutic intervention to control the spread of the disease. Improving our understanding on the host’s anti-viral immune response on SARS-CoV-2 infection, the potential immune evasion mechanisms adopted by the virus, and the speculated role of antibody dependent enhancement (ADE) in coronavirus disease 2019 (COVID-19) pathogenesis will aid in identifying and designing effective therapeutics. Aim: This review aims to provide an in-depth view of the current knowledge available on the range of host defense mechanisms activated by SARS-CoV-2 infection and various immune evasion mechanisms utilized by the virus. In addition, it also highlights the postulated role of ADE in viral pathogenesis and covers the different preventive and therapeutic options available for the treatment of COVID-19 based on current literature. Discussion: The ongoing COVID-19 pandemic serves as a timely reminder on the constant evolutionary process the virus undergoes to emerge as a novel strain and to spread undetected within the population. Similar to other infectious diseases, the host defence mechanism is triggered, and it plays a central role in dampening viral replication by recruiting immune cells and activating anti-viral mechanisms to control the spread of infection by SARS-CoV-2. However, the virus has adopted different immune evasion mechanisms to circumvent host surveillance to successfully establish infection. Hence, understanding the host’s immune responses triggered by SARS-CoV-2 infection is critical for identifying and designing novel and effective therapeutics. Currently, over 70% of the population are either asymptomatic or they showcase mild to moderate symptoms and reasons for why some people can mount immune responses more quickly than others are unknown. However, a growing body of research speculates that the ADE mechanism may facilitate the SARS-CoV-2 entry and can contribute to severe clinical manifestations. With the constant rise in the number of confirmed cases, there is an immediate need for an effective vaccine to mitigate the spread of the virus. Presently, there is no treatment for COVID-19 although several vaccine candidates are in clinical trials. Therefore, preventive measures like social distancing, isolation, and travel restrictions, may be the key to controlling the rapid spread of COVID-19.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Luis H. Franco ◽  
Stephen M. Beverley ◽  
Dario S. Zamboni

Leishmaniapromastigotes express several prominent glycoconjugates, either secreted or anchored to the parasite surface. Of these lipophosphoglycan (LPG) is the most abundant, and along with other phosphoglycan-bearing molecules, plays important roles in parasite infectivity and pathogenesis in both the sand fly and the mammalian host. Besides its contribution for parasite survival in the sand fly vector, LPG is important for modulation the host immune responses to favor the establishment of mammalian infection. This review will summarize the current knowledge regarding the role of LPG inLeishmaniainfectivity, focusing on the interaction of LPG and innate immune cells and in the subversion of mammalian functions by this molecule.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 546-549
Author(s):  
Shweta Dadarao Parwe ◽  
Milind Abhimanyu Nisargandha ◽  
Rishikesh Thakre

Hitherto, there is no proper line of treatment for the new (nCOVID19). The development of unique antiviral drugs has taken precedence. Therapeutic antibodies () will be a significantly beneficial agent against nCOVID-19. Here the host immune responses to new discussed in this review provide strategy and further treatment and understanding of clinical interventions against nCOVID-19. Plasma therapy uses the antibodies found in the blood of people recovering (or convalesced) from an infection to treat infected patients. When an infection occurs, the body begins producing proteins specially made to kill the germ, called antibodies. Those antibodies coat specifically plasma in the blood of survivors, the yellow transparent liquid blood portion for months or even years. research assesses plasma use from Convalescent patients of infected with nCOVID-19 as a possible preventive treatment. But it is not yet recommended as a line of treatment, and it is used as a clinical trial in the new in Indian population.


Cells ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1720
Author(s):  
Kuo-Chieh Liao ◽  
Mariano A. Garcia-Blanco

The importance of transcriptional regulation of host genes in innate immunity against viral infection has been widely recognized. More recently, post-transcriptional regulatory mechanisms have gained appreciation as an additional and important layer of regulation to fine-tune host immune responses. Here, we review the functional significance of alternative splicing in innate immune responses to viral infection. We describe how several central components of the Type I and III interferon pathways encode spliced isoforms to regulate IFN activation and function. Additionally, the functional roles of splicing factors and modulators in antiviral immunity are discussed. Lastly, we discuss how cell death pathways are regulated by alternative splicing as well as the potential role of this regulation on host immunity and viral infection. Altogether, these studies highlight the importance of RNA splicing in regulating host–virus interactions and suggest a role in downregulating antiviral innate immunity; this may be critical to prevent pathological inflammation.


Author(s):  
Sebastian Wawrocki ◽  
Magdalena Druszczynska

The development of effective innate and subsequent adaptive host immune responses is highly dependent on the production of proinflammatory cytokines that increase the activity of immune cells. The key role in this process is played by inflammasomes, multimeric protein complexes serving as a platform for caspase-1, an enzyme responsible for proteolytic cleavage of IL-1βand IL-18 precursors. Inflammasome activation, which triggers the multifaceted activity of these two proinflammatory cytokines, is a prerequisite for developing an efficient inflammatory response against pathogenicMycobacterium tuberculosis(M.tb). This review focuses on the role of NLRP3 and AIM2 inflammasomes inM.tb-driven immunity.


2022 ◽  
Vol 23 (1) ◽  
pp. 525
Author(s):  
Tarina Sharma ◽  
Anwar Alam ◽  
Aquib Ehtram ◽  
Anshu Rani ◽  
Sonam Grover ◽  
...  

Mycobacterium tuberculosis (M.tb) is a successful pathogen that can reside within the alveolar macrophages of the host and can survive in a latent stage. The pathogen has evolved and developed multiple strategies to resist the host immune responses. M.tb escapes from host macrophage through evasion or subversion of immune effector functions. M.tb genome codes for PE/PPE/PE_PGRS proteins, which are intrinsically disordered, redundant and antigenic in nature. These proteins perform multiple functions that intensify the virulence competence of M.tb majorly by modulating immune responses, thereby affecting immune mediated clearance of the pathogen. The highly repetitive, redundant and antigenic nature of PE/PPE/PE_PGRS proteins provide a critical edge over other M.tb proteins in terms of imparting a higher level of virulence and also as a decoy molecule that masks the effect of effector molecules, thereby modulating immuno-surveillance. An understanding of how these proteins subvert the host immunological machinery may add to the current knowledge about M.tb virulence and pathogenesis. This can help in redirecting our strategies for tackling M.tb infections.


2021 ◽  
Vol 5 (4) ◽  
pp. 195-221
Author(s):  
Katarzyna Nazimek ◽  

<abstract> <p>At present, special efforts are being made to develop the strategies allowing for activation of long-lasting antigen-specific immune tolerance in therapy of allergic and autoimmune diseases. Some of these therapeutic approaches are aimed at modulating cell functions at genetic level by using miRNA-based and miRNA-targeting treatments. Simultaneously, the crucial role of extracellular vesicles as natural miRNA conveyors is highlighted for induction of antigen-specific immune tolerance, especially that they appear to be easily manipulatable for therapeutic applications. Among other immune-related miRNAs, miR-150 is getting special attention as it is differently expressed by immune cells at various stages of their maturation and differentiation. In addition, miR-150 is involved in different signaling cascades orchestrating humoral and cell-mediated mechanisms of both innate and adaptive immune responses. Therefore, miR-150 is considered a master regulator of immunity in mammals. Currently, physiological miR-150-dependent regulatory circuits and causes of their malfunctioning that underlie the pathogenesis of allergic and autoimmune disorders are being unraveled. Thus, present review summarizes the current knowledge of the role of miR-150 in the pathogenesis and complications of these diseases. Furthermore, the involvement of miR-150 in regulation of immune responses to allergens and self-antigens and in induction of antigen-specific immune tolerance is discussed with the special emphasis on the therapeutic potential of this miRNA.</p> </abstract>


2021 ◽  
Author(s):  
Bhoomi Madhu ◽  
Tina L. Gumienny

Innate immunity in animals is orchestrated by multiple cell signaling pathways, including the TGF-β; superfamily pathway. While the role of TGF-β signaling in innate immunity has been clearly identified, the requirement for this pathway in generating specific, robust responses to different bacterial challenges has not been characterized. Here, we address the role of DBL-1/TGF-β in regulating signature host defense responses to a wide range of bacteria in C. elegans. This work reveals a role of DBL-1/TGF-β in animal survival, organismal behaviors, and molecular responses in different environments. Additionally, we identify a novel role for SMA-4/Smad that suggests both DBL-1/TGF-β-dependent and -independent functions in host avoidance responses. RNA-seq analyses and immunity reporter studies indicate DBL-1/TGF-β differentially regulates target gene expression upon exposure to different bacteria. Furthermore, the DBL-1/TGF-β pathway is itself differentially affected by the bacteria exposure. Collectively, these findings demonstrate bacteria-specific host immune responses regulated by the DBL-1/TGF-β signaling pathway.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
T. M. Cardesa-Salzmann ◽  
A. Simon ◽  
N. Graf

AbstractAcute lymphoblastic leukemia (ALL) is the most common pediatric cancer with precursor B-cell ALL (pB-ALL) accounting for ~ 85% of the cases. Childhood pB-ALL development is influenced by genetic susceptibility and host immune responses. The role of the intestinal microbiome in leukemogenesis is gaining increasing attention since Vicente-Dueñas’ seminal work demonstrated that the gut microbiome is distinct in mice genetically predisposed to ALL and that the alteration of this microbiome by antibiotics is able to trigger pB-ALL in Pax5 heterozygous mice in the absence of infectious stimuli. In this review we provide an overview on novel insights on the role of the microbiome in normal and preleukemic hematopoiesis, inflammation, the effect of dysbiosis on hematopoietic stem cells and the emerging importance of the innate immune responses in the conversion from preleukemic to leukemic state in childhood ALL. Since antibiotics, which represent one of the most widely used medical interventions, alter the gut microbial composition and can cause a state of dysbiosis, this raises exciting epidemiological questions regarding the implications for antibiotic use in early life, especially in infants with a a preleukemic “first hit”. Sheading light through a rigorous study on this piece of the puzzle may have broad implications for clinical practice.


Sign in / Sign up

Export Citation Format

Share Document