Yield response of potatoes to variable nitrogen management by landform element and in relation to petiole nitrogen – A case study

2012 ◽  
Vol 92 (4) ◽  
pp. 771-781 ◽  
Author(s):  
A. P. Moulin ◽  
Y. Cohen ◽  
V. Alchanatis ◽  
N. Tremblay ◽  
K. Volkmar

Moulin, A. P., Cohen, Y., Alchanatis, V., Tremblay, N. and Volkmar, K. 2012. Yield response of potatoes to variable nitrogen management by landform element and in relation to petiole nitrogen – A case study. Can. J. Plant Sci. 92: 771–781. Recent increases in the cost of fertilizer N have prompted producers to assess the potential to vary inputs within fields and during the growing season to produce the highest marketable yield of potatoes (Solanum tuberosum L.). A study was conducted from 2005 to 2007 near Brandon, Manitoba, Canada, to assess the spatial variability of potato yield in upper, middle and lower landform elements on a sandy loam soil in response to a range of N fertilizer rates applied in the spring or in combination with an application during the growing season. There was no clear trend with respect to the effect of landform on potato yield. Nitrogen fertilizer increased total and marketable yield relative to the control at rates from 75 to 225 kg ha−1in split applications or applied at seeding. No significant interaction between landform and fertilizer treatment was observed. Petiole N concentration, determined late in the growing season, was correlated with potato yield though the correlation varied considerably between years. Petiole leaflet N concentration was affected by fertilizer on most sampling dates, but decreased with time during the growing season. We conclude that although N fertilizer could be applied during the growing season based on petiole leaflet N concentration deficiencies in mid-July, there is no clear difference in potato yield due to split application relative to spring applications of N fertilizer at rates of 75 kg ha−1or greater based on landform elements for potato production, likely due to the short growing season in western Canada.

1988 ◽  
Vol 68 (1) ◽  
pp. 31-39 ◽  
Author(s):  
D. L. SMITH ◽  
M. DIJAK ◽  
D. J. HUME

White bean (Phaseolus vulgaris) is generally reported to be poorly nodulated, to fix less nitrogen than soybean and to show increased yields following N fertilizer application. The work reported here attempted to determine whether white bean was N-limited under field conditions by comparing it with soybean (Glycine max (L.) Merrill) for N accumulation in whole plants through the course of the growing season, and for N distribution among, and N concentration in, plant parts at maturity. The effects of N fertilizer and irrigation were tested in three field experiments. White bean and soybean crops were found to accumulate N at similar rates during the growing season. However, in soybean, the concentration of N in seeds was higher and the concentration in nonseed tissues lower than white bean. Differences between species for N concentrations were reflected in the allocation of N among plant parts. In both crops, fertilizer N always increased the concentration of N in seeds, and often did so in other plant tissues. Irrigation increased tissue N concentrations of plants grown on a loam soil, but decreased it on a sandy loam soil. White bean was more variable in N allocation and N concentration responses to N fertilizer and irrigation than soybean. These data indicate that, although it had much lower N2-fixation rates and comparable N demands, white bean was not more N-limited than soybean.Key words: Bean (white), soybean, irrigation, N fertilizer, N yield, N partitioning


2000 ◽  
Vol 80 (1) ◽  
pp. 161-164 ◽  
Author(s):  
D. A. Holmstrom ◽  
M. R. Carter

Soil compaction under potato rotations can be a common problem in Prince Edward Island. This can be further aggravated by naturally occurring compact subsoils. A study was conducted at eight sites on sandy loam soils in three regions of Prince Edward Island to determine whether the recommended practice of subsoiling the fall prior to the potato crop would improve the physical condition of the soil and result in improved yields. The study found that subsoiling provided only a marginal improvement in soil physical conditions. Soil loosening did not increase potato yield or quality. Key words: Potato, subsoiling, yield response, potato quality


2021 ◽  
Vol 11 ◽  
Author(s):  
Ji Shi ◽  
Yiping Tong

Understanding the molecular mechanisms in wheat response to nitrogen (N) fertilizer will help us to breed wheat varieties with improved yield and N use efficiency. Here, we cloned TaLAMP1-3A, -3B, and -3D, which were upregulated in roots and shoots of wheat by low N availability. In a hydroponic culture, lateral root length and N uptake were decreased in both overexpression and knockdown of TaLAMP1 at the seedling stage. In the field experiment with normal N supply, the grain yield of overexpression of TaLAMP1-3B is significantly reduced (14.5%), and the knockdown of TaLAMP1 was significantly reduced (15.5%). The grain number per spike of overexpression of TaLAMP1-3B was significantly increased (7.2%), but the spike number was significantly reduced (19.2%) compared with wild type (WT), although the grain number per spike of knockdown of TaLAMP1 was significantly decreased (15.3%), with no difference in the spike number compared with WT. Combined with the agronomic data from the field experiment of normal N and low N, both overexpression and knockdown of TaLAMP1 inhibited yield response to N fertilizer. Overexpressing TaLAMP1-3B greatly increased grain N concentration with no significant detrimental effect on grain yield under low N conditions; TaLAMP1-3 B is therefore valuable in engineering wheat for low input agriculture. These results suggested that TaLAMP1 is critical for wheat adaptation to N availability and in shaping plant architecture by regulating spike number per plant and grain number per spike. Optimizing TaLAMP1 expression may facilitate wheat breeding with improved yield, grain N concentration, and yield responses to N fertilizer.


1980 ◽  
Vol 10 (1) ◽  
pp. 65-70 ◽  
Author(s):  
R. van den Driessche

A 5N × 5P factorial fertilizer experiment was conducted on Douglas-fir (Pseudotsugamenziesii (Mirb.) Franco) seed beds at Campbell River nursery on northern Vancouver Island. Nutrient concentrations were measured in soil and seedlings. After 2 years of growth, trees were lifted from each treatment in mid-November and again in mid-February for storage. All were planted out in April and grown for 2 years. Seedling dry weight and height in the nursery were significantly affected by N fertilizer treatment, but not by P fertilizer, although seedling tissue P concentrations were low (0.09-0.17%) and available soil P was significantly increased by treatment. Largest seedlings resulted from application of 50-75 kg N/ha during the 1st year of growth and 100-150 kg N/ha during the 2nd year. Seedling dry weight was correlated with tissue N concentration (r = 0.73-0.75) and greatest dry weight was associated with a 1-0 shoot N or a 2-0 foliar N concentration of 2%. Survival and height 2 years after planting out were significantly affected by N fertilizer treatment in the nursery, and the nursery treatments resulting in largest seedlings yielded the highest survival and height. However the N concentration of 2-0 seedlings was not closely correlated with survival or height, and shoot dry weight was the most useful nursery measurement for predicting these values (r = 0.49). Fertilization did not affect cold hardiness and hardiness of trees was essentially the same at both lifting dates. Survival at 2 years after planting was unaffected by lifting date.


HortScience ◽  
2016 ◽  
Vol 51 (2) ◽  
pp. 186-191 ◽  
Author(s):  
Xiaojie Zhao ◽  
Guihong Bi ◽  
Richard L. Harkess ◽  
Jac J. Varco ◽  
Tongyin Li ◽  
...  

Tall bearded (TB) iris (Iris germanica L.) has great potential as a specialty cut flower due to its fragrance and showy, multicolor display; however, limited research has been reported on optimal nitrogen (N) nutrient management for TB iris. The objectives of this study were to investigate the effects of N fertilizer rate on plant growth and flowering of ‘Immortality’ iris and determine the influence of both stored N and spring-applied N fertilizer on spring growth and flowering. On 14 Mar. 2012, rhizomes of ‘Immortality’ iris were potted in a commercial substrate with no starter fertilizer. Plants were fertigated with 0, 5, 10, 15, or 20 mm N from NH4NO3 twice per week from 28 Mar. to 28 Sept. 2012. In 2013, half of the plants from each of the 2012 N rate were supplied with either 0 or 10 mm N from 15NH415NO3 twice per week from 25 Mar. to 7 May 2013. Growth and flowering data including plant height, leaf SPAD, number of fans and inflorescence stems, and length of inflorescence stem were collected during the growing season. Plants were harvested in Dec. 2012 and May 2013 to measure dry weight and N concentration in leaves, roots, and rhizomes. Results showed higher 2012 N rates increased plant height, leaf SPAD reading, and number of inflorescence stems at first and second blooming in 2012. Greater 2012 N rates also increased plant dry weight and N content in all structures, and N concentration in roots and rhizomes. Rhizomes (58.8% to 66.3% of total N) were the dominant sink for N in Dec. 2012. Higher 2012 N rates increased plant height, number of fans, and the number of inflorescence stems at spring bloom in 2013. In May 2013, N in leaf tissue constituted the majority (51% to 64.3%) of the total plant N. Higher 2012 N rates increased total dry weight, N concentration, and N content in all 2013 15N rates; however, leaf dry weight in all plants was improved by 2013 15N rate. Percentage of tissue N derived from 2013 15N (NDFF) decreased with increasing 2012 N rate. New spring leaves were the dominant sink (56.8% to 72.2%) for 2013 applied 15N. In summary, ‘Immortality’ iris is capable of a second blooming in a growing season, this second blooming dependent on N fertilization rate in current year. A relatively high N rate is recommended to produce a second bloom.


1998 ◽  
Vol 90 (1) ◽  
pp. 10-15 ◽  
Author(s):  
Mohamed Errebhi ◽  
Carl J. Rosen ◽  
Satish C. Gupta ◽  
David E. Birong

2002 ◽  
Vol 82 (4) ◽  
pp. 785-788 ◽  
Author(s):  
K. R. Sanderson ◽  
M. R. Carter

Both studies and information are lacking concerning Ca and S nutrition of rutabagas (Brassica napobrassica Mill). Five field studies were conducted to determine yield response of rutabagas to soil-applied gypsum (CaSO4·2H2O), lime (calcite) and elemental S on sandy loam to loamy sand Orthic Podzols in Prince Edward Island. Marketable yield of rutabagas was not affected by addition of Ca or S amendments. Gypsum increased the S content of rutabaga leaf tissue and reduced soil pH. In this study, a soil extractable Ca level of at least 318 µg g-1 soil appears adequate to support rutabaga growth. Key words: Rutabagas, calcium, gypsum, calcite, elemental sulphur


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2055
Author(s):  
Chedzer-Clarc Clément ◽  
Athyna N. Cambouris ◽  
Noura Ziadi ◽  
Bernie J. Zebarth ◽  
Antoine Karam

Nitrate leaching is of great environmental concern, particularly with potatoes grown on sandy soils. This 3-year study evaluated the effect of three N rates (100, 150, and 200 kg ha−1) of single applications of polymer-coated urea (PCU) and a 75% PCU + 25% urea mixture, plus a conventional split application of 200 kg N ha−1 of a 50% ammonium sulfate + 50% calcium ammonium nitrate mixture (CONV) on NO3−-N leaching, potato yield, and N uptake under irrigated and non-irrigated conditions on a sandy soil in Quebec (Canada). Fertilizer N application increased growing season NO3−-N leaching only under irrigation. On average, irrigation increased seasonal NO3−-N leaching by 52%. Under irrigated conditions, PCU reduced NO3−-N leaching compared to PCU + urea. However, both PCU and PCU + urea significantly increased NO3−-N leaching compared to the CONV at the equivalent N rate of 200 kg N ha−1. This was attributed to the timing of soil N availability and deep-water percolation. Total (TY) and marketable (MY) yields in the CONV were similar to those in the PCU applied at the equivalent N rate of 200 kg N ha−1. Despite lower plant N uptake, PCU resulted in greater TY and MY compared to PCU + urea. Residual soil inorganic N was greater for PCU and PCU + urea compared to the CONV, providing evidence that PCU products have the potential to increase NO3−-N leaching after the growing season. In this study, PCU was an agronomically and environmentally better choice than PCU + urea. The results also showed that the efficiency of PCU to reduce seasonal NO3−-N leaching may vary according to the timing of precipitation and irrigation.


2001 ◽  
Vol 81 (5) ◽  
pp. 535-544 ◽  
Author(s):  
G. Bélanger ◽  
J. R. Walsh ◽  
J. E. Richards ◽  
P. H. Milburn ◽  
N. Ziadi

Nitrogen greatly affects potato ( Solanum tuberosum L.) yield, but excess N can result in environmental degradation. In this study soil nitrate (NO3-N) content was determined pre-plant to predict fertilizer N requirements of potatoes in Atlantic Canada and in mid-season to adjust N fertilization during the growing season. Soil NO3-N contents were measured to a 0.30-m depth in spring prior to planting at four on-farm sites in each of 3 yr (1995 to 1997) in the upper St. John River Valley of New Brunswick, Canada. Mid-season soil NO3-N contents at a 0–0.30 m depth were also determined (32–47 days after planting) at two sites in three N treatments in 1995 (0, 50, and 250 kg N ha-1) and in four N treatments in 1996 and 1997 (0, 50, 100, and 250 kg N ha-1). The yield response of potatoes to six rates of N fertilization (0–250 kg N ha-1) with and without supplemental irrigation was used to determine the economically optimum N application (Nop). The pre-plant spring soil NO3-N test alone could not adequately predict the N requirements of potatoes in Atlantic Canada; the Nop and relative yield were poorly correlated (0.07 < R2< 0.52) with spring soil NO3-N content. The mid-season soil NO3-N test, however, could be used to determine the need for supplemental N fertilizer; NO3-N content correlated well (0.44 < R2< 0.68) with the relative yield for total and marketable yield. We suggest a critical mid-season value of 80 mg NO3-N kg-1 soil for marketable yield, above which additional N application might not be necessary. Key Words: N fertilizer, nitrate, Nop, relative yield, Solanum tuberosum, critical value


1978 ◽  
Vol 14 (3) ◽  
pp. 253-259 ◽  
Author(s):  
H. N. Verma ◽  
S. S. Prihar ◽  
Ranjodh Singh ◽  
Nathu Singh

SUMMARYField experiments were conducted for 4 years to study the yield of ‘kharif’ and ‘rabi’ crops grown in sequence on two soils differing in water-holding capacity. The results indicated that drought caused greater reduction in yield of rainy-season crops on loamy sand than on sandy loam soil. In low retentivity soil it was more profitable to raise a single crop of wheat on soil-stored water. In sandy loam soil of higher retentivity, two crops a year gave much higher yields than a single crop. Of the sequences tried, maize followed by wheat gave the highest and most stable yields. For ‘rabi’ crops, stored water showed a better yield response than an equivalent amount of rain during the growing season.


Sign in / Sign up

Export Citation Format

Share Document