Advancements in practical and scientific bioanalytical approaches to metabolism studies in drug development

Bioanalysis ◽  
2021 ◽  
Author(s):  
Dipali Sonawane ◽  
Anuradha Reddy ◽  
Tarang Jadav ◽  
Amit K Sahu ◽  
Rakesh K Tekade ◽  
...  

Advancement in metabolism profiling approaches and bioanalytical techniques has been revolutionized over the last two decades. Different in vitro and in vivo approaches along with advanced bioanalytical techniques are enabling the accurate qualitative and quantitative analysis of metabolites. This review summarizes various modern in vitro and in vivo approaches for executing metabolism studies with special emphasis on the recent advancement in the field. Advanced bioanalytical techniques, which can be employed in metabolism studies, have been discussed suggesting their particular application based on specific study objectives. This article can efficiently guide the researchers to scientifically plan metabolism studies and their bioanalysis during drug development programs taking advantage of a detailed understanding of instances of failure in the past.

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2150
Author(s):  
Dilip K. Rai ◽  
Katerina Tzima

Berries have been widely assessed for their beneficial health effects, predominately due to their high (poly)phenol content of anthocyanins and ellagitannins. After ellagitannins and ellagic acid are metabolized by the gut microbiome, a class of compounds known as urolithins are produced, which exert potential advantageous health effects. Anthocyanins, on the other hand, undergo a complex metabolic pathway after their interaction with microbial and endogenous enzymes, forming a broad range of metabolites and catabolic products. In most cases, in vitro models and cell lines are used to generate metabolites, whereas their assessment in vivo is currently limited. Thus far, several analytical methods have been developed for the qualitative and quantitative analysis of phenolic metabolites in berries, including liquid chromatography, mass spectrometry, and other hyphenated techniques, and have been undoubtedly valuable tools for the detailed metabolite characterization and profiling. In this review, a compilation of studies providing information on the qualitative and quantitative analysis of (poly)phenol metabolites in blackberries and raspberries after the utilization of in vitro and in vivo methods is presented. The different analytical techniques employed are assessed, focusing on the fate of the produced metabolic compounds in order to provide evidence on their characteristics, formation, and beneficial effects.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Shailesh Dugam ◽  
Rahul Tade ◽  
Rani Dhole ◽  
Sopan Nangare

Abstract Background Microneedles (MNs) are the utmost unique, efficient, and minimally invasive inventions in the pharmaceutical field. Over the past decades, many scientists around the globe have reported MNs cautious because of their superb future in distinct areas. Concerning the wise use of MNs herein, we deal in depth with the present applications of MNs in drug delivery. Main text The present review comprises various fabrication materials and methods used for MN synthesis. The article also noted the distinctive advantages of these MNs, which holds huge potential for pharmaceutical and biomedical applications. The role of MNs in serving as a platform to treat various ailments has been explained accompanied by unusual approaches. The review also inculcates the pharmacokinetics of MNs, which includes permeation, absorption, and bioavailability enhancement. Besides this, the in vitro/in vivo toxicity, biosafety, and marketed product of MNs have been reviewed. We have also discussed the clinical trials and patents on the pharmaceutical applications of MNs in brief. Conclusion To sum up, this article gives insight into the MNs and provides a recent advancement in MNs, which pave the pathway for future pharmaceutical and biomedical applications. Graphical abstract Pharmaceutical and biomedical applications of MNs


1987 ◽  
Vol 1987 (Supplement 8) ◽  
pp. 141-163 ◽  
Author(s):  
M. M. MAREEL ◽  
F. M. VAN ROY ◽  
L. M. MESSIAEN ◽  
E. R. BOGHAERT ◽  
E. A. BRUYNEEL

Parasitology ◽  
1989 ◽  
Vol 99 (1) ◽  
pp. 89-97 ◽  
Author(s):  
M. S. Ibrahim ◽  
W. K. Tamashiro ◽  
D. A. Moraga ◽  
A. L. Scott

SUMMARYA qualitative and quantitative analysis was made of the release of surface-associated molecules from developing Dirofilaria immitis infective-stage larvae (L3). D. immitis L3s were labelled with 125I using an Iodogen catalysed reaction and either maintained in culture or placed in chambers that were implanted into Lewis rats. The larvae released 10–20% of the labelled material each day during the first 4 days of in vitro and in vivo development. The loss of surface-labelled peptides from developing larvae corresponded with an increase in the amount of trichloroacetic acid-precipitable radioactivity found in the culture medium. SDS—PAGE analysis of the labelled material showed that the same 35 and 6 kDa components found in larval extracts were shed into culture medium by the developing parasites. Metabolic labelling studies and experiments in which larvae were labelled after different times in culture indicated that, once released, the surfaceassociated molecules were not replaced, and that this net loss of surface peptides resulted in a reduction in the antigenic potential of the cuticular surface. Antibodies from both immunized rabbits and naturally infected dogs immunoprecipitated the 35 kDa component. In contrast, the 6 kDa molecule was not recognized by the antibodies in any of the sera tested. Shedding of surface peptides and reducing surface antigenicity may represent mechanisms by which D. immitis infective-stage larvae evade immune attack.


2018 ◽  
Vol 18 (2) ◽  
pp. 156-165 ◽  
Author(s):  
Jiaqiang Wang ◽  
Chien-shan Cheng ◽  
Yan Lu ◽  
Xiaowei Ding ◽  
Minmin Zhu ◽  
...  

Background: Propofol, a widely used intravenous anesthetic agent, is traditionally applied for sedation and general anesthesia. Explanation: Recent attention has been drawn to explore the effect and mechanisms of propofol against cancer progression in vitro and in vivo. Specifically, the proliferation-inhibiting and apoptosis-inducing properties of propofol in cancer have been studied. However, the underlying mechanisms remain unclear. Conclusion: This review focused on the findings within the past ten years and aimed to provide a general overview of propofol's malignance-modulating properties and the potential molecular mechanisms.


Author(s):  
John D. Horner ◽  
Bartosz J. Płachno ◽  
Ulrike Bauer ◽  
Bruno Di Giusto

The ability to attract prey has long been considered a universal trait of carnivorous plants. We review studies from the past 25 years that have investigated the mechanisms by which carnivorous plants attract prey to their traps. Potential attractants include nectar, visual, olfactory, and acoustic cues. Each of these has been well documented to be effective in various species, but prey attraction is not ubiquitous among carnivorous plants. Directions for future research, especially in native habitats in the field, include: the qualitative and quantitative analysis of visual cues, volatiles, and nectar; temporal changes in attractants; synergistic action of combinations of attractants; the cost of attractants; and responses to putative attractants in electroantennograms and insect behavioral tests.


2020 ◽  
Author(s):  
Piero Zollet ◽  
Timothy E.Yap ◽  
M Francesca Cordeiro

The transparent eye media represent a window through which to observe changes occurring in the retina during pathological processes. In contrast to visualising the extent of neurodegenerative damage that has already occurred, imaging an active process such as apoptosis has the potential to report on disease progression and therefore the threat of irreversible functional loss in various eye and brain diseases. Early diagnosis in these conditions is an important unmet clinical need to avoid or delay irreversible sight loss. In this setting, apoptosis detection is a promising strategy with which to diagnose, provide prognosis, and monitor therapeutic response. Additionally, monitoring apoptosis in vitro and in vivo has been shown to be valuable for drug development in order to assess the efficacy of novel therapeutic strategies both in the pre-clinical and clinical setting. Detection of Apoptosing Retinal Cells (DARC) technology is to date the only tool of its kind to have been tested in clinical trials, with other new imaging techniques under investigation in the fields of neuroscience, ophthalmology and drug development. We summarize the transitioning of techniques detecting apoptosis from bench to bedside, along with the future possibilities they encase.


Lab on a Chip ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 795-820
Author(s):  
Andrea Spanu ◽  
Laura Martines ◽  
Annalisa Bonfiglio

This review focuses on the applications of organic transistors in cellular interfacing. It offers a comprehensive retrospective of the past, an overview of the latest innovations, and a glance on the future perspectives of this fast-evolving field.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Miao-Miao Zhao ◽  
Wei-Li Yang ◽  
Fang-Yuan Yang ◽  
Li Zhang ◽  
Wei-Jin Huang ◽  
...  

AbstractTo discover new drugs to combat COVID-19, an understanding of the molecular basis of SARS-CoV-2 infection is urgently needed. Here, for the first time, we report the crucial role of cathepsin L (CTSL) in patients with COVID-19. The circulating level of CTSL was elevated after SARS-CoV-2 infection and was positively correlated with disease course and severity. Correspondingly, SARS-CoV-2 pseudovirus infection increased CTSL expression in human cells in vitro and human ACE2 transgenic mice in vivo, while CTSL overexpression, in turn, enhanced pseudovirus infection in human cells. CTSL functionally cleaved the SARS-CoV-2 spike protein and enhanced virus entry, as evidenced by CTSL overexpression and knockdown in vitro and application of CTSL inhibitor drugs in vivo. Furthermore, amantadine, a licensed anti-influenza drug, significantly inhibited CTSL activity after SARS-CoV-2 pseudovirus infection and prevented infection both in vitro and in vivo. Therefore, CTSL is a promising target for new anti-COVID-19 drug development.


Sign in / Sign up

Export Citation Format

Share Document