Determination of Viscoelastic Core Material Properties Using Sandwich Beam Theory and Modal Experiments

Author(s):  
Shih-Wei Kung ◽  
Rajendra Singh
1971 ◽  
Vol 93 (4) ◽  
pp. 1239-1244 ◽  
Author(s):  
A. Chatterjee ◽  
J. R. Baumgarten

An energy method is employed to analyze the damping in the fundamental mode of a simply-supported sandwich beam with viscoelastic core material sandwiched between two elastic metallic layers called the facings. The theory developed herein enables one to predict the damped natural frequency and the damping (in terms of logarithmic decrement) of the transverse vibration of a beam of known dimensions, provided the moduli-frequency characteristics of the core material are known. Experimental measurements bear out the accuracy of the theoretical predictions. The theory can very easily be extended for the analysis of higher discrete modes.


1992 ◽  
Vol 59 (3) ◽  
pp. 530-538 ◽  
Author(s):  
K.-F. Nilsson ◽  
B. Stora˚kers

Analysis of fracture growth, and in particular at interfaces, is pertinent not only to load-carrying members in composite structures but also as regards, e.g., adhesive joints, thin films, and coatings. Ordinarily linear fracture mechanics then constitutes the common tool to solve two-dimensional problems occasionally based on beam theory. In the present more general effort, an analysis is first carried out for determination of the energy release rate at general loading of multilayered plates with local crack advance either at interfaces or parallel to such. The procedure is accomplished for arbitrary hyperelastic material properties within von Karman plate theory and the results are expressed by aid of an Eshelby energy momentum tensor. By a feasible superposition it is then shown that the original nonlinear plate problem may be reduced to that of an equivalent beam in case of linear material properties. As a consequence of the so-established principle, the magnitude of mode-dependent singular stress amplitude factors is then directly determinable from earlier two-dimensional linear beam solutions for isotropic and anisotropic bimaterials and relevant at determination of cohesive and adhesive fracture. The procedure is illustrated by an analysis of combined buckling and crack growth of a delaminated plate having a nontrivial crack contour.


2019 ◽  
Vol 25 (23-24) ◽  
pp. 2875-2893 ◽  
Author(s):  
M. Bamdad ◽  
M. Mohammadimehr ◽  
K. Alambeigi

Vibration and buckling analysis of a magneto-electro-elastic sandwich Timoshenko beam with a porous core and poly-vinylidene fluoride (PVDF) matrix reinforced by carbon nanotubes (CNTs) is considered as face layers and material properties of CNTs and PVDF are assumed to be temperature-dependent. Different CNT distribution patterns including uniform distribution, AV (which top and bottom face sheets have functionally graded-A (FG-A) and functionally graded-V (FG-V) CNT distribution patterns, respectively) and VA patterns are employed. The governing equations of motion are derived based on Timoshenko beam theory, and Navier's solution is used to solve these equations. The sandwich beam resting on a Pasternak foundation and face layers are subjected to electric and magnetic potentials. The effect of different parameters such as porosity coefficient, electric and magnetic potential, parameters of foundation, and geometrical parameters are investigated on vibration and buckling behavior of the sandwich beam. Numerical results of this paper show that porosity distribution has a significant effect on the stiffness of the sandwich beam. The results can be used for future analysis of magneto-electro-mechanical sandwich systems as actuators and sensors.


2007 ◽  
Vol 345-346 ◽  
pp. 1319-1322 ◽  
Author(s):  
Evgeny Barkanov ◽  
Andris Chate ◽  
Sandris Ručevskis ◽  
Eduards Skukis

An inverse technique based on vibration tests to characterise isotropic, orthotropic and viscoelastic material properties of advanced composites is developed. An optimisation using the planning of experiments and response surface technique to minimise the error functional is applied to decrease considerably computational expenses. The inverse technique developed is tested on aluminium plates and applied to characterise orthotropic material properties of laminated composites and viscoelastic core material properties of sandwich composites.


2020 ◽  
Vol 835 ◽  
pp. 229-242
Author(s):  
Oboso P. Bernard ◽  
Nagih M. Shaalan ◽  
Mohab Hossam ◽  
Mohsen A. Hassan

Accurate determination of piezoelectric properties such as piezoelectric charge coefficients (d33) is an essential step in the design process of sensors and actuators using piezoelectric effect. In this study, a cost-effective and accurate method based on dynamic loading technique was proposed to determine the piezoelectric charge coefficient d33. Finite element analysis (FEA) model was developed in order to estimate d33 and validate the obtained values with experimental results. The experiment was conducted on a piezoelectric disc with a known d33 value. The effect of measuring boundary conditions, substrate material properties and specimen geometry on measured d33 value were conducted. The experimental results reveal that the determined d33 coefficient by this technique is accurate as it falls within the manufactures tolerance specifications of PZT-5A piezoelectric film d33. Further, obtained simulation results on fibre reinforced and particle reinforced piezoelectric composite were found to be similar to those that have been obtained using more advanced techniques. FE-results showed that the measured d33 coefficients depend on measuring boundary condition, piezoelectric film thickness, and substrate material properties. This method was proved to be suitable for determination of d33 coefficient effectively for piezoelectric samples of any arbitrary geometry without compromising on the accuracy of measured d33.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
B. Saraswathy ◽  
R. Ramesh Kumar ◽  
Lalu Mangal

Analytical formulation for the evaluation of frequency of CFRP sandwich beam with debond, following the split beam theory, generally underestimates the stiffness, as the contact between the honeycomb core and the skin during vibration is not considered in the region of debond. The validation of the present analytical solution for multiple-debond size is established through 3D finite element analysis, wherein geometry of honeycomb core is modeled as it is, with contact element introduced in the debond region. Nonlinear transient analysis is followed by fast Fourier transform analysis to obtain the frequency response functions. Frequencies are obtained for two types of model having single debond and double debond, at different spacing between them, with debond size up to 40% of beam length. The analytical solution is validated for a debond length of 15% of the beam length, and with the presence of two debonds of same size, the reduction in frequency with respect to that of an intact beam is the same as that of a single-debond case, when the debonds are well separated by three times the size of debond. It is also observed that a single long debond can result in significant reduction in the frequencies of the beam than multiple debond of comparable length.


2017 ◽  
Vol 52 (3) ◽  
pp. 395-404
Author(s):  
Xiuqi Lyu ◽  
Jun Takahashi ◽  
Yi Wan ◽  
Isamu Ohsawa

Chopped carbon fiber tape-reinforced thermoplastic material is specifically developed for the high-volume production of lightweight automobiles. With excellent design processability and flexibility, the carbon fiber tape-reinforced thermoplastic material is manufactured by compressing large amounts of randomly oriented, pre-impregnated unidirectional tapes in a plane. Therefore, the carbon fiber tape-reinforced thermoplastic material presents transversely isotropic properties. Transverse shear effect along the thickness direction of carbon fiber tape-reinforced thermoplastic beam has a distinct influence on its flexural deformation. Accordingly, the Timoshenko beam theory combined with vibration frequencies was proposed to determine the set of transverse flexural and shear moduli. Meanwhile, the transverse flexural and shear moduli of carbon fiber tape-reinforced thermoplastic beam were finally determined by fitting all the first seven measured and calculated eigenfrequencies with the least squares criterion. In addition, the suggested thickness to length ratio for the 3-point bending test and Euler–Bernoulli model was given.


1982 ◽  
Vol 19 (01) ◽  
pp. 52-72
Author(s):  
William A. Henrickson ◽  
John S. Spencer

The need exists for a simplified structural review guide to enable U.S. Coast Guard marine inspectors to verify the structural adequacy of aluminum crewboats. The authors have developed such a guide. Typical existing crewboat forms and service speeds have been used to reduce the determination of impact pressures to a function of length and displacement. A design stress limit for the cyclic loading of the bottom structure has been determined based on wave observation data. Plating design has been verified by a comparison of sizing by beam theory versus elastoplastic analysis. A simplified grillage analysis has been used to determine the level of support provided by longitudinal plate girders or keelsons. A worked example and tables of section moduli for typical extrusions attached to plating are included as appendices.


Sign in / Sign up

Export Citation Format

Share Document