Fecal Shedding of Enterohemorrhagic Escherichia coli in Weaned Calves following Treatment with Probiotic Escherichia coli

2003 ◽  
Vol 66 (7) ◽  
pp. 1184-1189 ◽  
Author(s):  
SUZANA TKALCIC ◽  
TONG ZHAO ◽  
BARRY G. HARMON ◽  
MICHAEL P. DOYLE ◽  
CATHY A. BROWN ◽  
...  

The fecal shedding and pathogenicity of enterohemorrhagic E. coli (EHEC) O26:H11, EHEC O111:NM, and EHEC O157:H7 in weaned calves (8 to 10 weeks of age) were compared with and without treatment with a three-strain mixture of probiotic bacteria (competitive-exclusion E. coli). Three groups of 12 calves were each perorally given a five-strain mixture of one of the EHEC serotypes (1010 CFU of total bacteria per calf). Seventy-two hours later, six calves from each group were each administered 1010 CFU of probiotic bacteria. None of the EHEC serotypes caused significant clinical disease, although a few calves developed mild transient diarrhea or pyrexia. Gross or microscopic lesions attributable to EHEC were not detected in control or probiotic-treated calves at necropsy. For probiotic-treated calves given E. coli O157:H7 and for probiotic-treated calves given E. coli O111:NM, fecal shedding was reduced compared with that for untreated calves. For the probiotic-treated calves given E. coli O157:H7, the reductions in fecal shedding on days 8, 12, 14, 16, 20, 22, 28, and 30 after peroral administration were statistically significant (P < 0.05). For probiotic-treated calves given E. coli O111:NM, there were statistically significant reductions (P < 0.05) in fecal shedding on days 6, 8, 10, and 12. In contrast, there was no reduction in fecal shedding for calves administered E. coli O26:H11 and treated with the probiotic bacteria. In fact, calves in both the treated and the nontreated groups continued to shed large populations of E. coli O26:H11 throughout the 32-day trial. At necropsy, E. coli O157:H7 was isolated from five of six untreated calves and from only two of six probiotic-treated calves. E. coli O111:NM was isolated from four of six untreated calves at necropsy and from two of six probiotic-treated calves. However, E. coli O26:H11 was isolated from five of six untreated calves and from all six probiotic-treated calves. The results obtained in this study indicate that probiotic E. coli substantially reduced or eliminated fecal shedding of E. coli O157:H7 and E. coli O111:NM 8 to 30 days and 6 to 12 days after the administration of the probiotic culture, respectively, and reduced the persistence of E. coli O157:H7 in the gastrointestinal tract at necropsy (31 to 33 days after the administration of the probiotic culture). The probiotic E. coli did not reduce fecal shedding or gastrointestinal persistence of E. coli O26:H11.

2003 ◽  
Vol 66 (6) ◽  
pp. 924-930 ◽  
Author(s):  
TONG ZHAO ◽  
SUZANA TKALCIC ◽  
MICHAEL P. DOYLE ◽  
BARRY G. HARMON ◽  
CATHY A. BROWN ◽  
...  

The pathogenicity and fecal shedding of enterohemorrhagic Escherichia coli (EHEC) O26:H11, O111:NM, and O157:H7 were compared in calves (<1 week of age) with or without prior treatment with probiotic bacteria (competitive exclusion E. coli). Three groups of 12 to 14 calves were used for these treatments. Half of the calves in each group were perorally administered 1010 CFU of probiotic bacteria per calf, and, 2 days thereafter, 108 CFU of a five-strain mixture with one of the three EHEC serotypes per calf were administered to each calf. None of the EHEC serotypes caused clinical disease, and neither gross nor microscopic lesions attributable to EHEC were detected in control or probiotic-treated calves at necropsy. In calves administered E. coli O157:H7, fecal shedding was greatly reduced (>6 log10 CFU/g) by 8 days after administration, and there was no significant difference (P > 0.05) in fecal shedding of E. coli O157:H7 between probiotic-treated and untreated control groups at that time. In contrast, control calves perorally administered E. coli of serotypes O111:NM or O26:H11 continued to shed substantial populations (102.1 to 106 CFU/g of feces and 102.5 to 104.9 CFU/g of feces, respectively) throughout 7 days postadministrationof EHEC. In both groups administered either E. coli O111:NM or O26:H11, significantly less (P < 0.05) EHEC was isolated from feces at 7 days postadministration of EHEC and at necropsy from the probiotic-treated group than from the untreated control group. Overall, neonatal calves shed in the feces from 1 to 7 days following peroral administration of EHEC greater populations of E. coli O111:NM and O26:H11 than E. coli O157:H7. In addition, treatment of calves with probiotic E. coli reduced fecal shedding of E. coli O111:NM and O26:H11 in most calves.


1998 ◽  
Vol 36 (3) ◽  
pp. 641-647 ◽  
Author(s):  
Tong Zhao ◽  
Michael P. Doyle ◽  
Barry G. Harmon ◽  
Cathy A. Brown ◽  
P. O. Eric Mueller ◽  
...  

Bacteria inhibitory to Escherichia coli O157:H7 were isolated from cattle and evaluated for their potential for reducing carriage of E. coli O157:H7 in calves. Eighteen of 1,200 bacterial isolates from cattle feces and intestinal tissue samples were screened and determined to inhibit the growth of E. coliO157:H7 in vitro. Seventeen of the isolates were E. coli and one was Proteus mirabilis. None produced Shiga toxin. Genomic DNA fingerprinting by pulsed-field gel electrophoresis revealed 13 distinguishable profiles among the 18 isolates. Two calves inoculated perorally with a mixture of all 18 isolates (1010 CFU) appeared to be normal and did not develop signs of clinical disease throughout a 25- to 27-day observation period. These bacteria colonized segments of the gastrointestinal tract and were in feces at the termination of the experiment (25 and 27 days postinoculation) at levels of 50 to 200 CFU/g. Fifteen cannulated calves were studied to determine the efficiency of the probiotic bacteria in reducing or eliminating the carriage of E. coli O157:H7. Nine calves served as controls, with each animal receiving perorally 1010 CFU ofE. coli O157:H7. E. coliO157:H7 was detected intermittently in the rumen samples from all control animals throughout 3 weeks postinoculation, whereasE. coli O157:H7 was shed at various levels in feces continuously throughout the experiment (mean, 28 days).E. coli O157:H7 was isolated from the rumens and colons of eight of nine and nine of nine calves, respectively, at the termination of the study. Six calves each received perorally 1010 CFU of probiotic bacteria and then 2 days later received 1010 CFU of E. coli O157:H7.E. coli O157:H7 was detected in the rumen for only 9 days postinoculation in two animals, for 16 days in one animal, for 17 days in two animals, and for 29 days in one animal. E. coli O157:H7 was detected in feces for only 11 days postinoculation in one animal, for 15 days in one animal, for 17 days in one animal, for 18 days in one animal, for 19 days in one animal, and for 29 days in one animal. At the end of the experiment (mean, 30 days), E. coli O157:H7 was not recovered from the rumen of any of the six animals treated with probiotic bacteria; however, E. coli O157:H7 was recovered from the feces of one of the animals. This animal was fasted twice postinoculation. These studies indicate that selected probiotic bacteria administered to cattle prior to exposure to E. coli O157:H7 can reduce the level of carriage ofE. coli O157:H7 in most animals.


2020 ◽  
Vol 8 (2) ◽  
pp. 263 ◽  
Author(s):  
Rodney A. Moxley ◽  
Tom W. Bargar ◽  
Stephen D. Kachman ◽  
Diane R. Baker ◽  
David H. Francis

Enterohemorrhagic Escherichia coli (EHEC), a pathogenic subset of Shiga toxin-producing E. coli (STEC), is an important cause of hemorrhagic colitis and hemolytic–uremic syndrome (HUS), and a rare cause of urinary tract infections (UTIs) with associated HUS. EHEC strains attach intimately to intestinal epithelium with formation of actin pedestals (attaching-effacing (A/E) lesions); however, the mechanism of EHEC attachment to the uroepithelium is unknown. We conducted a retrospective study on archived urinary bladder specimens from gnotobiotic piglets that naturally developed cystitis associated with EHEC O157:H7 infection following oral inoculation and fecal shedding. Paraffin-embedded bladder tissues from three piglets with cystitis and immunohistochemical evidence of EHEC O157:H7 adherence to the uroepithelium were processed for and examined by transmission electron microscopy. EHEC O157:H7 bacteria were found in one of three piglets, intimately attached to pedestals on the apical surfaces of the superficial urothelium (umbrella cells). Cystitis was significantly associated with the length of survival of the piglets post-inoculation (p = 0.0339; estimated odds ratio = 2.6652). This is the first report of E. coli causing A/E-like lesions in the uroepithelium, and also evidence of the utility of the gnotobiotic piglet as a model for studies of the pathogenesis of EHEC UTIs.


2005 ◽  
Vol 71 (1) ◽  
pp. 93-97 ◽  
Author(s):  
J. Christopher Low ◽  
Iain J. McKendrick ◽  
Caroline McKechnie ◽  
David Fenlon ◽  
Stuart W. Naylor ◽  
...  

ABSTRACT Escherichia coli O157:H7 is an important cause of diarrhea, hemorrhagic colitis, and potentially fatal human illness. Cattle are considered a primary reservoir of infection, and recent experimental evidence has indicated that the terminal rectum is the principal site of bacterial carriage. To test this finding in naturally colonized animals, intact rectum samples from 267 cattle in 24 separate lots were obtained immediately after slaughter, and fecal material and mucosal surfaces were cultured for E. coli O157 by direct and enrichment methods. Two locations, 1 and 15 cm proximal to the recto-anal junction, were tested. In total, 35 animals were positive for E. coli O157 at at least one of the sites and 232 animals were negative as determined by all tests. The frequency of isolation and the numbers of E. coli O157 cells were higher at the site closer to the recto-anal junction, confirming our previous experimental findings. We defined low- and high-level carriers as animals with E. coli O157 levels of <1 � 103 CFU g−1 or <1 � 103 CFU ml−1 and animals with E. coli O157 levels of ≥1 � 103 CFU g−1 or ≥1 � 103 CFU ml−1 in feces or tissues, respectively. High-level carriage was detected in 3.7% of the animals (95% confidence interval, 1.8 to 6.8%), and carriage on the mucosal surface of the terminal rectum was associated with high-level fecal excretion. In summary, our results support previous work demonstrating that the mucosal epithelium in the bovine terminal rectum is an important site for E. coli O157 carriage in cattle. The data also support the hypothesis that high-level fecal shedding (≥1 � 103 CFU g of feces−1) of enterohemorrhagic E. coli O157 results from colonization of this site.


2009 ◽  
Vol 89 (2) ◽  
pp. 285-293 ◽  
Author(s):  
S J Bach ◽  
R P Johnson ◽  
K. Stanford ◽  
T A McAllister

Bacteriophage biocontrol has potential as a means of mitigating the prevalence of Escherichia coli O157:H7 in ruminants. The efficacy of oral administration of bacteriophages for reducing fecal shedding of E. coli O157:H7 by sheep was evaluated using 20 Canadian Arcott rams (50.0 ± 3.0) housed in four rooms (n = 5) in a contained facility. The rams had ad libitum access to drinking water and a pelleted barley-based total mixed ration, delivered once daily. Experimental treatments consisted of administration of E. coli O157:H7 (O157), E. coli O157:H7+bacteriophages (O157+phage), bacteriophages (phage), and control (CON). Oral inoculation of the rams with 109 CFU of a mixture of four nalidixic acid-resistant strains of E. coli O157:H7 was performed on day 0. A mixture of 1010 PFU of bacteriophages P5, P8 and P11 was administered on days -2, -1, 0, 6 and 7. Fecal samples collected on 14 occasions over 21 d were analyzed for E. coli O157:H7, total E. coli, total coliforms and bacteriophages. Sheep in treatment O157+phage shed fewer (P < 0.05) E. coli O157:H7 than did sheep in treatment O157. Populations of total coliforms and total E. coli were similar (P < 0.05) among treatments, implying that bacteriophage lysis of non-target E. coli and coliform bacteria in the gastrointestinal tract did not occur. Bacteriophage numbers declined rapidly over 21 d, which likely reduced the chance of collision between bacteria and bacteriophage. Oral administration of bacteriophages reduced shedding of E. coli O157:H7 by sheep, but a delivery system that would protect bacteriophages during passage through the intestine may increase the effectiveness of this strategy as well as allow phage to be administered in the feed.Key words: Escherichia coli O157:H7, bacteriophage, sheep, environment, coliforms


2012 ◽  
Vol 75 (9) ◽  
pp. 1691-1697 ◽  
Author(s):  
BURTON W. BLAIS ◽  
MARTINE GAUTHIER ◽  
MYLÈNE DESCHÊNES ◽  
GEORGE HUSZCZYNSKI

A cloth-based hybridization array system (CHAS) was developed for the identification of foodborne colony isolates of seven priority enterohemorrhagic Escherichia coli (EHEC-7) serogroups targeted by U.S. food inspection programs. Gene sequences associated with intimin; Shiga-like toxins 1 and 2; and the antigenic markers O26, O45, O103, O111, O121, O145, and O157 were amplified in a multiplex PCR incorporating a digoxigenin label, and detected by hybridization of the PCR products with an array of specific oligonucleotide probes immobilized on a polyester cloth support, with subsequent immunoenzymatic assay of the captured amplicons. The EHEC-7 CHAS exhibited 100% inclusivity and 100% exclusivity characteristics with respect to detection of the various markers among 89 different E. coli strains, with various marker gene profiles and 15 different strains of non–E. coli bacteria.


2001 ◽  
Vol 183 (17) ◽  
pp. 5187-5197 ◽  
Author(s):  
Vanessa Sperandio ◽  
Alfredo G. Torres ◽  
Jorge A. Girón ◽  
James B. Kaper

ABSTRACT Enterohemorrhagic Escherichia coli (EHEC) O157:H7 is responsible for outbreaks of bloody diarrhea and hemolytic-uremic syndrome in many countries. EHEC virulence mechanisms include the production of Shiga toxins (Stx) and formation of attaching and effacing (AE) lesions on intestinal epithelial cells. We recently reported that genes involved in the formation of the AE lesion were regulated by quorum sensing through autoinducer-2, which is synthesized by the product of the luxS gene. In this study we hybridized an E. coli gene array with cDNA synthesized from RNA that was extracted from EHEC strain 86-24 and its isogenicluxS mutant. We observed that 404 genes were regulated by luxS at least fivefold, which comprises approximately 10% of the array genes; 235 of these genes were up-regulated and 169 were down-regulated in the wild-type strain compared to in theluxS mutant. Down-regulated genes included several involved in cell division, as well as ribosomal and tRNA genes. Consistent with this pattern of gene expression, theluxS mutant grows faster than the wild-type strain (generation times of 37.5 and 60 min, respectively, in Dulbecco modified Eagle medium). Up-regulated genes included several involved in the expression and assembly of flagella, motility, and chemotaxis. Using operon::lacZ fusions to class I, II, and III flagellar genes, we were able to confirm this transcriptional regulation. We also observed fewer flagella by Western blotting and electron microscopy and decreased motility halos in semisolid agar in the luxS mutant. The average swimming speeds for the wild-type strain and the luxS mutant are 12.5 and 6.6 μm/s, respectively. We also observed an increase in the production of Stx due to quorum sensing. Genes encoding Stx, which are transcribed along with λ-like phage genes, are induced by an SOS response, and genes involved in the SOS response were also regulated by quorum sensing. These results indicate that quorum sensing is a global regulatory mechanism for basic physiological functions of E. coli as well as for virulence factors.


2017 ◽  
Vol 83 (11) ◽  
Author(s):  
Daniela Ceccarelli ◽  
Alieda van Essen-Zandbergen ◽  
Bregtje Smid ◽  
Kees T. Veldman ◽  
Gert Jan Boender ◽  
...  

ABSTRACT Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpC) are enzymes able to hydrolyze a large variety of β-lactam antibiotics, including third-generation cephalosporins and monobactams. Broilers and broiler meat products can be highly contaminated with ESBL- and pAmpC-producing Escherichia coli strains, also known as extended-spectrum cephalosporin (ESC)-resistant E. coli strains, and can be a source for human infections. As few data on interventions to reduce the presence of ESC-resistant E. coli in broilers are available, we used transmission experiments to examine the role of competitive exclusion (CE) on reducing transmission and excretion in broilers. A broiler model to study the transmission of ESC-resistant E. coli was set up. Day-old chickens were challenged with an ESBL-producing E. coli strain isolated from healthy broilers in the Netherlands. Challenged and not challenged chicks were housed together in pairs or in groups, and ESBL-producing E. coli transmission was monitored via selective culturing of cloacal swab specimens. We observed a statistically significant reduction in both the transmission and excretion of ESBL-producing E. coli in chicks treated with the probiotic flora before E. coli challenge compared to the transmission and excretion in untreated controls. In conclusion, our results support the use of competitive exclusion as an intervention strategy to control ESC-resistant E. coli in the field. IMPORTANCE Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases are a primary cause of resistance to β-lactam antibiotics among members of the family Enterobacteriaceae in humans, animals, and the environment. Food-producing animals are not exempt from this, with a high prevalence being seen in broilers, and there is evidence pointing to a possible foodborne source for human contamination. We investigated the effect of administration of a commercial probiotic product as an intervention to reduce the amount of ESBL-producing Escherichia coli in broilers. Our results showed a substantial reduction in the level of colonization of broiler intestines by ESBL-producing E. coli after administration of commercial probiotic product. The protective effect provided by these probiotics could be implemented on a larger scale in poultry production. Reductions in the levels of ESBL-producing Enterobacteriaceae in the food chain would considerably benefit public health.


2003 ◽  
Vol 69 (8) ◽  
pp. 4915-4926 ◽  
Author(s):  
Michael B. Cooley ◽  
William G. Miller ◽  
Robert E. Mandrell

ABSTRACT Enteric pathogens, such as Salmonella enterica and Escherichia coli O157:H7, have been shown to contaminate fresh produce. Under appropriate conditions, these bacteria will grow on and invade the plant tissue. We have developed Arabidopsis thaliana (thale cress) as a model system with the intention of studying plant responses to human pathogens. Under sterile conditions and at 100% humidity, S. enterica serovar Newport and E. coli O157:H7 grew to 109 CFU g−1 on A. thaliana roots and to 2 × 107 CFU g−1 on shoots. Furthermore, root inoculation led to contamination of the entire plant, indicating that the pathogens are capable of moving on or within the plant in the absence of competition. Inoculation with green fluorescent protein-labeled S. enterica and E. coli O157:H7 showed invasion of the roots at lateral root junctions. Movement was eliminated and invasion decreased when nonmotile mutants of S. enterica were used. Survival of S. enterica serovar Newport and E. coli O157:H7 on soil-grown plants declined as the plants matured, but both pathogens were detectable for at least 21 days. Survival of the pathogen was reduced in unautoclaved soil and amended soil, suggesting competition from indigenous epiphytes from the soil. Enterobacter asburiae was isolated from soil-grown A. thaliana and shown to be effective at suppressing epiphytic growth of both pathogens under gnotobiotic conditions. Seed and chaff harvested from contaminated plants were occasionally contaminated. The rate of recovery of S. enterica and E. coli O157:H7 from seed varied from undetectable to 19% of the seed pools tested, depending on the method of inoculation. Seed contamination by these pathogens was undetectable in the presence of the competitor, Enterobacter asburiae. Sampling of 74 pools of chaff indicated a strong correlation between contamination of the chaff and seed (P = 0.025). This suggested that contamination of the seed occurred directly from contaminated chaff or by invasion of the flower or silique. However, contaminated seeds were not sanitized by extensive washing and chlorine treatment, indicating that some of the bacteria reside in a protected niche on the seed surface or under the seed coat.


2014 ◽  
Vol 77 (7) ◽  
pp. 1212-1218 ◽  
Author(s):  
BURTON BLAIS ◽  
MYLÈNE DESCHÊNES ◽  
GEORGE HUSZCZYNSKI ◽  
MARTINE GAUTHIER

A simple immunoenzymatic enterohemorrhagic Escherichia coli (EHEC) colony check (ECC) assay was developed for the presumptive identification of priority EHEC colonies isolated on plating media from enrichment broth cultures of foods. With this approach, lipopolysaccharide extracted from a colony is spotted on the grid of a polymyxin-coated polyester cloth strip, and bound E. coli serogroup O26, O45, O103, O111, O121, O145, and O157 antigens are subsequently detected by sequential reactions with a pool of commercially available peroxidase-conjugated goat antibodies and tetramethylbenzidine substrate solution. Each strip can accommodate up to 15 colonies, and test results are available within 30 min. Assay performance was verified using colonies from a total of 73 target EHEC isolates covering the range of designated priority serogroups (all of which were reactive), 41 nontarget E. coli isolates including several nontarget Shiga toxin–producing E. coli serogroups (all unreactive), and 33 non–E. coli strains (all unreactive except two bacterial strains possessing O-antigenic structures in common with those of the priority EHEC). The ECC assay was reactive with target colonies grown on several types of selective and nonselective plating media designed for their cultivation. These results support the use of the ECC assay for high-throughput screening of colonies isolated on plating media for detecting priority EHEC strains in foods.


Sign in / Sign up

Export Citation Format

Share Document