Virulence and Antibiotic Resistance of Vibrio parahaemolyticus Isolates from Seafood from Three Developing Countries and of Worldwide Environmental, Seafood, and Clinical Isolates from 2000 to 2017

2017 ◽  
Vol 80 (12) ◽  
pp. 2060-2067 ◽  
Author(s):  
Mohammad M. Obaidat ◽  
Alaa E. Bani Salman ◽  
Amira A. Roess

ABSTRACT Vibrio parahaemolyticus is a leading cause of seafood-associated illness. This study investigated the prevalence, virulence, and antibiotic resistance of V. parahaemolyticus in three low- and middle-income countries. Freshly caught fish samples (n = 330) imported to Jordan from Yemen, India, and Egypt were tested. The overall prevalence of V. parahaemolyticus was 15% (95% confidence interval: 11 to 19%). Three isolates (6%) were positive for the thermostable direct hemolysin–related (trh) gene, and all isolates was negative for the thermostable direct hemolysin (tdh) gene. All isolates were resistant to colistin sulfate, neomycin, and kanamycin, and 51 and 43% of isolates were resistant to tetracycline and ampicillin, respectively. Only 4% of the isolates were resistant to cefotaxime and chloramphenicol, and no isolates were resistant to sulfamethoxazole-trimethoprim, streptomycin, gentamicin, ciprofloxacin, and nalidixic acid. All isolates were resistant to two classes of antibiotics, and 86% were multidrug resistant (resistant to at least one drug in three or more classes of antibiotics). A literature review of clinical, seafood, and environmental V. parahaemolyticus isolates worldwide revealed high rates of gentamicin and ampicillin resistance, emerging resistance to third-generation cephalosporins, and limited resistance to sulfamethoxazole-trimethoprim, ciprofloxacin, nalidixic acid, and chloramphenicol. Thus, last-resort antibiotics could be ineffective for treating V. parahaemolyticus infections. Several global reports also documented illness outbreaks in humans caused by trh- and tdh-negative V. parahaemolyticus strains. More research is needed to determine whether the presence of these genes is sufficient to classify the strains as virulent.

2019 ◽  
Vol 66 (2) ◽  
Author(s):  
Pallavi Baliga ◽  
Malathi Shekar ◽  
Shaik Thahur Ahamed ◽  
M. N. Venugopal

Vibrio parahaemolyticus is a pathogen native to the aquatic environment. In this study, 46 environmental V. parahaemolyticus isolates were subjected to a correlational analysis to find the association between their antimicrobial susceptibility pattern, prevalence of CRISPR-Cas system and thermostable direct hemolysin (tdh) gene. Antibiotic resistance profiling against eleven antibiotics revealed the isolates to be multidrug resistant. Isolates exhibited highest resistance to vancomycin (97.8%) followed by ampicillin (91.3%), cefotaxime (69.6%), ceftazidime/clavulanic acid (54.4%), ceftazidime (45.7%) and gentamicin (39.1%). CRISPR loci and tdh gene were detected in 47.83 and 58.7% of strains respectively. No significant correlation was observed between antibiotic resistance to presence of CRISPR, except in the case of gentamicin wherein, a negative correlation was seen (r=-0.272, p<0.10). Similarly, tdh did not correlate to antibiotic resistance. Seventeen strains in this study harboured the CRISPR loci as well as tdh gene, the association of which was found to be statistically significant.


mSystems ◽  
2021 ◽  
Author(s):  
Ross Stuart McInnes ◽  
Md Hassan uz-Zaman ◽  
Imam Taskin Alam ◽  
Siu Fung Stanley Ho ◽  
Robert A. Moran ◽  
...  

Low- and middle-income countries (LMICs) have higher burdens of multidrug-resistant infections than high-income countries, and there is thus an urgent need to elucidate the drivers of the spread of antibiotic-resistant bacteria in LMICs. Here, we study the diversity and abundance of antibiotic resistance genes in surface water and sediments from rural and urban settings in Bangladesh.


Author(s):  
Ashok J. Tamhankar ◽  
Ramesh Nachimuthu ◽  
Ravikant Singh ◽  
Jyoti Harindran ◽  
Gautam Kumar Meghwanshi ◽  
...  

Antibiotic resistance has reached alarming proportions globally, prompting the World Health Organization to advise nations to take up antibiotic awareness campaigns. Several campaigns have been taken up worldwide, mostly by governments. The government of India asked manufacturers to append a ‘redline’ to packages of antibiotics as identification marks and conducted a campaign to inform the general public about it and appropriate antibiotic use. We investigated whether an antibiotic resistance awareness campaign could be organized voluntarily in India and determined the characteristics of the voluntarily organized campaign by administering a questionnaire to the coordinators, who participated in organizing the voluntary campaign India. The campaign characteristics were: multiple electro–physical pedagogical and participatory techniques were used, 49 physical events were organized in various parts of India that included lectures, posters, booklet/pamphlet distribution, audio and video messages, competitions, and mass contact rallies along with broadcast of messages in 11 local languages using community radio stations (CRS) spread all over India. The median values for campaign events were: expenditure—3000 Indian Rupees/day (US$~47), time for planning—1 day, program spread—4 days, program time—4 h, direct and indirect reach of the message—respectively 250 and 500 persons/event. A 2 min play entitled ‘Take antibiotics as prescribed by the doctor’ was broadcast 10 times/day for 5 days on CRS with listener reach of ~5 million persons. More than 85%ofcoordinators thought that the campaign created adequate awareness about appropriate antibiotic use and antibiotic resistance. The voluntary campaign has implications for resource limited settings/low and middle income countries.


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 27 ◽  
Author(s):  
David Graham ◽  
Myra Giesen ◽  
Joshua Bunce

Globally increasing antibiotic resistance (AR) will only be reversed through a suite of multidisciplinary actions (One Health), including more prudent antibiotic use and improved sanitation on international scales. Relative to sanitation, advanced technologies exist that reduce AR in waste releases, but such technologies are expensive, and a strategic approach is needed to prioritize more affordable mitigation options, especially for Low- and Middle-Income Countries (LMICs). Such an approach is proposed here, which overlays the incremental cost of different sanitation options and their relative benefit in reducing AR, ultimately suggesting the “next-most-economic” options for different locations. When considering AR gene fate versus intervention costs, reducing open defecation (OD) and increasing decentralized secondary wastewater treatment, with condominial sewers, will probably have the greatest impact on reducing AR, for the least expense. However, the best option for a given country depends on the existing sewerage infrastructure. Using Southeast Asia as a case study and World Bank/WHO/UNICEF data, the approach suggests that Cambodia and East Timor should target reducing OD as a national priority. In contrast, increasing decentralized secondary treatment is well suited to Thailand, Vietnam and rural Malaysia. Our approach provides a science-informed starting point for decision-makers, for prioritising AR mitigation interventions; an approach that will evolve and refine as more data become available.


2019 ◽  
Vol 147 ◽  
Author(s):  
S. Yukawa ◽  
I. Uchida ◽  
Y. Tamura ◽  
S. Ohshima ◽  
T. Hasegawa

AbstractDog treats might be contaminated withSalmonella. In Canada and the USA, outbreaks of human salmonellosis related to exposure to animal-derived dog treats were reported. Consequently, surveillance data onSalmonellacontamination of dog treats have been gathered in many countries, but not in Japan. In the current study, we investigated whether dog treats in Japan were contaminated withSalmonella. Overall, 303 dog treats (of which 255 were domestically produced) were randomly collected and the presence ofSalmonellainvestigated. Seven samples were positive forSalmonella entericasubsp.enterica. Among these isolates, three were identified as serovar 4,5,12:i:–; two were serovar Rissen; and two were serovar Thompson. All serovar 4,5,12:i:– and Thompson isolates were resistant to one or more drugs. Two serovar Rissen isolates were fully susceptible to all tested antimicrobial agents. AllSalmonellaisolates were susceptible to cefotaxime, ciprofloxacin and nalidixic acid. The geneblaTEMwas detected in two serovar 4,5,12:i:– isolates. TheblaCTX−MandblaCMYgenes were not detected in any isolates. This study demonstrated that dog treats in Japan could constitute a potential source of dog and humanSalmonellainfections, including multidrug-resistantSalmonellaisolates.


2009 ◽  
Vol 53 (6) ◽  
pp. 2450-2454 ◽  
Author(s):  
Inácio Mandomando ◽  
Dinis Jaintilal ◽  
Maria J. Pons ◽  
Xavier Vallès ◽  
Mateu Espasa ◽  
...  

ABSTRACT The antimicrobial susceptibility and mechanisms of resistance of 109 Shigella and 40 Salmonella isolates from children with diarrhea in southern Mozambique were assessed. The susceptibility to seven antimicrobial agents was tested by disk diffusion, and mechanisms of resistance were searched by PCR or colorimetric method. A high proportion of Shigella isolates were resistant to chloramphenicol (Chl) (52%), ampicillin (Amp) (56%), tetracycline (Tet) (66%), and trimethoprim-sulfamethoxazole (Sxt) (84%). Sixty-five percent of the isolates were multidrug resistant. Shigella flexneri isolates were more resistant than those of Shigella sonnei to Amp (66% versus 0.0%, P < 0.001) and Chl (61% versus 0.0%, P < 0.001), whereas S. sonnei isolates presented higher resistance to Tet than S. flexneri isolates (93% versus 64%, P = 0.02). Resistance among Salmonella isolates was as follows: Tet and Chl, 15% each; Sxt, 18%; and Amp, 25%. Only 3% of Salmonella isolates were resistant to nalidixic acid (Nal), and none to ciprofloxacin or ceftriaxone (Cro). Among Salmonella isolates, multiresistance was found in 23%. Among Shigella isolates, antibiotic resistance was related mainly to the presence of oxa-1-like β-lactamases for Amp, dfrA1 genes for Sxt, tetB genes for Tet, and Chl acetyltransferase (CAT) activity for Chl. Among Salmonella isolates, resistance was conferred by tem-like β-lactamases for Amp, floR genes and CAT activity for Chl, tetA genes for Tet, and dfrA1 genes for Sxt. Our data show that Shigella isolates are resistant mostly to the most available, inexpensive antibiotics by various molecular mechanisms but remain susceptible to ciprofloxacin, Cro, and Nal, which is the first line for empirical treatment of shigellosis in the country.


2018 ◽  
Vol 81 (8) ◽  
pp. 1339-1345 ◽  
Author(s):  
KAFEEL AHMAD ◽  
FARYAL KHATTAK ◽  
AMJAD ALI ◽  
SHAISTA RAHAT ◽  
SHAZIA NOOR ◽  
...  

ABSTRACT We report the prevalence of extended-spectrum β-lactamases and carbapenemases in Escherichia coli isolated from retail chicken in Peshawar, Pakistan. One hundred E. coli isolates were recovered from retail chicken. Antibiotic susceptibility testing was carried out against ampicillin, chloramphenicol, kanamycin, nalidixic acid, cephalothin, gentamicin, sulfamethoxazole-trimethoprim, and streptomycin. Phenotypic detection of β-lactamase production was analyzed through double disc synergy test using the antibiotics amoxicillin-clavulanate, cefotaxime, ceftazidime, cefepime, and aztreonam. Fifty multidrug-resistant isolates were screened for detection of sul1, aadA, cmlA, int, blaTEM, blaSHV, blaCTX-M, blaOXA-10, blaVIM, blaIMP, and blaNDM-1 genes. Resistance to ampicillin, nalidixic acid, kanamycin, streptomycin, cephalothin, sulfamethoxazole-trimethoprim, gentamicin, cefotaxime, ceftazidime, aztreonam, cefepime, amoxicillin-clavulanate, and chloramphenicol was 92, 91, 84, 73, 70, 67, 53, 48, 40, 39, 37, 36, and 23% respectively. Prevalence of sul1, aadA, cmlA, int, blaTEM, blaCTX-M, blaIMP, and blaNDM-1 was 78% (n = 39), 76% (n = 38), 20% (n = 10), 90% (n = 45), 74% (n = 37), 94% (n = 47), 22% (n = 11), and 4% (n = 2), respectively. blaSHV, blaOXA-10, and blaVIM were not detected. The coexistence of multiple antibiotic resistance genes in multidrug-resistant strains of E. coli is alarming. Hence, robust surveillance strategies should be developed with a focus on controlling the spread of antibiotic resistance genes via the food chain.


2018 ◽  
Vol 69 (4) ◽  
pp. 563-570 ◽  
Author(s):  
Sumanth Gandra ◽  
Katie K Tseng ◽  
Anita Arora ◽  
Bhaskar Bhowmik ◽  
Matthew L Robinson ◽  
...  

Abstract Background The threat posed by antibiotic resistance is of increasing concern in low- and middle-income countries (LMICs) as their rates of antibiotic use increase. However, an understanding of the burden of resistance is lacking in LMICs, particularly for multidrug-resistant (MDR) pathogens. Methods We conducted a retrospective, 10-hospital study of the relationship between MDR pathogens and mortality in India. Patient-level antimicrobial susceptibility test (AST) results for Enterococcus spp., Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. were analyzed for their association with patient mortality outcomes. Results We analyzed data on 5103 AST results from 10 hospitals. The overall mortality rate of patients was 13.1% (n = 581), and there was a significant relationship between MDR and mortality. Infections with MDR and extensively drug resistant (XDR) E. coli, XDR K. pneumoniae, and MDR A. baumannii were associated with 2–3 times higher mortality. Mortality due to methicillin-resistant S. aureus (MRSA) was significantly higher than susceptible strains when the MRSA isolate was resistant to aminoglycosides. Conclusions This is one of the largest studies undertaken in an LMIC to measure the burden of antibiotic resistance. We found that MDR bacterial infections pose a significant risk to patients. While consistent with prior studies, the variations in drug resistance and associated mortality outcomes by pathogen are different from those observed in high-income countries and provide a baseline for studies in other LMICs. Future research should aim to elucidate the burden of resistance and the differential transmission mechanisms that drive this public health crisis.


Sign in / Sign up

Export Citation Format

Share Document