PCR Primers for screening food for verotoxin-producing Escherichia coli, inclusive of three vt1 and seven vt2 subtypes

Author(s):  
Tanis McMahon ◽  
Jillian Bastian ◽  
Inas Alshawa ◽  
Alexander Gill

Verotoxin-producing Escherichia coli (VTEC; also known as Shiga toxin-producing E. coli ) are a significant cause of foodborne illnesses around the world. Due to the serological and genomic diversity of VTEC, methods of detection for VTEC in food samples require detection of verotoxin or its gene vt (also known as stx ). The current taxonomy of vt identifies three vt1 (a,c,d) and seven vt2 (a to g) subtypes. PCR detection of vt is convenient and rapid, but protocols may not detect all currently identified variants or subtypes of vt . The Health Canada Compendium of Analytical Methods for the analysis of food for VTEC is MFLP-52. MFLP-52 includes a VT Screening PCR that is used to determine the presumptive presence of VTEC by the detection of vt in food enrichments, and to differentiate VTEC from other isolates. The VT Screening PCR was developed prior to the establishment of the current vt taxonomy. An evaluation of VT Screening PCR for detection of the ten established vt -subtypes was performed and it was discovered that the method could not detect subtypes vt1d and vt2f . Additional primers and a modified protocol were developed and the modified VT Screening PCR was tested against an inclusivity panel of 50 VTEC strains, including representatives of ten vt -subtypes, and an exclusivity panel of 30 vt negative E. coli from various sources, to ensure specificity. The reliability of MFLP-52 with the modified VT Screening PCR was assessed by analysis of four priority food matrices (ground beef, lettuce, cheese and apple cider) inoculated with a VTEC strain at 2 to 5 CFU per 25 g. The modified VT Screening PCR was determined to be able to detect all ten vt -subtypes and reliably detect the presence of VTEC in all tested food enrichments.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jose F. Delgado-Blas ◽  
Cristina M. Ovejero ◽  
Sophia David ◽  
Natalia Montero ◽  
William Calero-Caceres ◽  
...  

AbstractAquatic environments are key niches for the emergence, evolution and dissemination of antimicrobial resistance. However, the population diversity and the genetic elements that drive the dynamics of resistant bacteria in different aquatic environments are still largely unknown. The aim of this study was to understand the population genomics and evolutionary events of Escherichia coli resistant to clinically important antibiotics including aminoglycosides, in anthropogenic and natural water ecosystems. Here we show that less different E. coli sequence types (STs) are identified in wastewater than in rivers, albeit more resistant to antibiotics, and with significantly more plasmids/cell (6.36 vs 3.72). However, the genomic diversity within E. coli STs in both aquatic environments is similar. Wastewater environments favor the selection of conserved chromosomal structures associated with diverse flexible plasmids, unraveling promiscuous interplasmidic resistance genes flux. On the contrary, the key driver for river E. coli adaptation is a mutable chromosome along with few plasmid types shared between diverse STs harboring a limited resistance gene content.


2002 ◽  
Vol 68 (4) ◽  
pp. 1631-1638 ◽  
Author(s):  
A. Leclercq ◽  
C. Wanegue ◽  
P. Baylac

ABSTRACT A 24-h direct plating method for fecal coliform enumeration with a resuscitation step (preincubation for 2 h at 37 ± 1°C and transfer to 44 ± 1°C for 22 h) using fecal coliform agar (FCA) was compared with the 24-h standardized violet red bile lactose agar (VRBL) method. FCA and VRBL have equivalent specificities and sensitivities, except for lactose-positive non-fecal coliforms such as Hafnia alvei, which could form typical colonies on FCA and VRBL. Recovery of cold-stressed Escherichia coli in mashed potatoes on FCA was about 1 log unit lower than that with VRBL. When the FCA method was compared with standard VRBL for enumeration of fecal coliforms, based on counting carried out on 170 different food samples, results were not significantly different (P > 0.05). Based on 203 typical identified colonies selected as found on VRBL and FCA, the latter medium appears to allow the enumeration of more true fecal coliforms and has higher performance in certain ways (specificity, sensitivity, and negative and positive predictive values) than VRBL. Most colonies clearly identified on both media were E. coli and H. alvei, a non-fecal coliform. Therefore, the replacement of fecal coliform enumeration by E. coli enumeration to estimate food sanitary quality should be recommended.


2017 ◽  
Vol 5 (50) ◽  
Author(s):  
Jayanthi Gangiredla ◽  
Mark K. Mammel ◽  
Tammy J. Barnaba ◽  
Carmen Tartera ◽  
Solomon T. Gebru ◽  
...  

ABSTRACT Pathogenic and nonpathogenic Escherichia coli strains present a vast genomic diversity. We report the genome sequences of 2,244 E. coli isolates from multiple animal and environmental sources. Their phylogenetic relationships and potential risk to human health were examined.


2015 ◽  
Vol 78 (8) ◽  
pp. 1554-1559 ◽  
Author(s):  
RONG WANG ◽  
NORASAK KALCHAYANAND ◽  
JAMES L. BONO

Bacterial biofilms are one of the potential sources of cross-contamination in food processing environments. Shiga toxin–producing Escherichia coli (STEC) O157:H7 and O111:H8 are important foodborne pathogens capable of forming biofilms, and the coexistence of these two STEC serotypes has been detected in various food samples and in multiple commercial meat plants throughout the United States. Here, we investigated how the coexistence of these two STEC serotypes and their sequence of colonization could affect bacterial growth competition and mixed biofilm development. Our data showed that E. coli O157:H7 strains were able to maintain a higher cell percentage in mixed biofilms with the co-inoculated O111:H8 companion strains, even though the results of planktonic growth competition were strain dependent. On solid surfaces with preexisting biofilms, the sequence of colonization played a critical role in determining the composition of the mixed biofilms because early stage precolonization significantly affected the competition results between the E. coli O157:H7 and O111:H8 strains. The precolonizer of either serotype was able to outgrow the other serotype in both planktonic and biofilm phases. The competitive interactions among the various STEC serotypes would determine the composition and structure of the mixed biofilms as well as their potential risks to food safety and public health, which is largely influenced by the dominant strains in the mixtures. Thus, the analysis of mixed biofilms under various conditions would be of importance to determine the nature of mixed biofilms composed of multiple microorganisms and to help implement the most effective disinfection operations accordingly.


1998 ◽  
Vol 81 (2) ◽  
pp. 403-418 ◽  
Author(s):  
Phyllis Entis ◽  
◽  
D Bryant ◽  
J Bryant ◽  
R G Bryant ◽  
...  

abstract Fifteen laboratories took part in a collaborative study to validate a method for enumerating Escherichia coli 0157:H7. The method is based on use of a hydrophobic grid membrane filter and consists of 24 h presumptive enumeration on SD-39 Agar and serological confirmation to yield a confirmed E. coli 0157:H7 count. Six food products were analyzed: pasteurized apple cider, pasteurized 2% milk, cottage cheese, cooked ground pork, raw ground beef, and frozen whole egg. The test method produced significantly higher confirmed count results than did the reference method for milk, pork, and beef. Test method results were numerically higher than but statistically equivalent to reference method results for cheese, cider, and egg. The test method produced lower repeatability and reproducibility values than did the reference method for most food/inoculation level combinations and values very similar to those of the reference method for the remaining combinations. Overall, 94% of presumptive positive isolates from the test method were confirmed serologically as E. coli 0157:H7, and 98% of these were also biochemically typical of E. coli 0157:H7 (completed test). Corresponding rates for the reference method were 69 and 98%, respectively. On the basis of the results of this collaborative study and the precollaborative study that preceded it, it is recommended that this method be adopted official first action for enumeration of E. coli 0157:H7 in meats, poultry, dairy foods, infant formula, liquid eggs, mayonnaise, and apple cider


2001 ◽  
Vol 64 (6) ◽  
pp. 783-787 ◽  
Author(s):  
CAROLYN M. MAYERHAUSER

Escherichia coli O157:H7 survival in acid foods such as unpasteurized apple cider and fermented sausage is well documented. Researchers have determined that E. coli O157:H7 can survive in refrigerated acid foods for weeks. The potential of acid foods to serve as a vector of E. coli O157:H7 foodborne illness prompted this study to determine the fate of this organism in retail mustard containing acetic acid when stored at room and refrigerated temperatures. Various retail brands of dijon, yellow, and deli style mustard, pH ranging from 3.17 to 3.63, were inoculated individually with three test strains of E. coli O157:H7. Samples were inoculated with approximately 1.0 × 106 CFU/g, incubated at room (25 ± 2.5°C) and refrigerated (5 ± 3°C) temperatures, and assayed for surviving test strains at predetermined time intervals. An aliquot was appropriately diluted and plated using sorbitol MacConkey agar (SMAC). When the test strain was not recoverable by direct plating, the sample was assayed by enrichment in modified tryptic soy broth and recovered using SMAC. Growth of E. coli O157:H7 test strains was inhibited in all retail mustard styles. E. coli O157:H7 was not detected in dijon style mustard beyond 3 h at room and 2 days at refrigerated temperatures. Survival in yellow and deli style mustard was not detected beyond 1 h. Overall, test strain survival was greater at refrigerated than room temperature. Retail mustard demonstrated the ability to eliminate effectively any chance contamination by this organism within hours to days, suggesting that these products are not a likely factor in E. coli O157:H7 foodborne illness.


1986 ◽  
Vol 49 (12) ◽  
pp. 944-951 ◽  
Author(s):  
J. E. KENNEDY ◽  
C. I. WEI ◽  
J. L. OBLINGER

The distribution of coliphages in various foods and the relationship between the incidences of coliphages and bacterial indicators were investigated. A total of 120 food samples comprising twelve products and including fresh meats, shellfish, vegetables and processed meats, were analyzed for indigenous coliphages using Escherichia coli hosts C, C-3000 and B. Bacterial analyses included enumeration of E. coli, fecal coliforms and coliforms, as well as aerobic plate counts and Salmonella analyses. Coliphages were detected (≥10 PFU/100 g) in 56% of samples and eleven of twelve products. Coliphages, E. coli, fecal coliforms and coliforms were recovered at a level of at least 30 organisms per 100 g in 43, 43, 68 and 81% of samples, with overall mean recoveries of 13, 19, 93 and 4300 organisms/100 g, respectively. Highest and lowest recoveries of coliphages and E. coli were from fresh meats and vacuum-packaged processed meats, respectively. Significant nonparametric correlations between coliphages, E. coli, fecal coliforms and coliforms were found among all food samples.


2009 ◽  
Vol 72 (10) ◽  
pp. 2065-2070 ◽  
Author(s):  
MASASHI KANKI ◽  
KAZUKO SETO ◽  
JUNKO SAKATA ◽  
TETSUYA HARADA ◽  
YUKO KUMEDA

Universal preenrichment broth (UPB) was compared with modified Escherichia coli broth with novobiocin (mEC+n) for enrichment of Shiga toxin–producing E. coli O157 and O26, and with buffered peptone water (BPW) for preenrichment of Salmonella enterica. Ten strains each of the three pathogens were inoculated into beef and radish sprouts following thermal, freezing, or no treatment. With regard to O157 and O26, UPB incubated at 42°C recovered significantly more cells from inoculated beef than UPB at 35°C and from radish sprout samples than UPB at 35°C and mEC+n. With regard to Salmonella, UPB incubated at 42°C was as effective as UPB at 35°C and BPW at recovering cells from beef and radish sprout samples. No significant difference was noted between the effectiveness of UPB at 42°C and UPB at 35°C or BPW in the recovery of Salmonella from 205 naturally contaminated poultry samples. By using UPB at 42°C, one O157:H7 strain was isolated from the mixed offal of 53 beef samples, 6 cattle offal samples, and 50 pork samples all contaminated naturally, with no pathogen inoculation. The present study found that UPB incubated at 42°C was as effective as, or better than, mEC+n for enrichment of O157 and O26 and comparable to BPW for preenrichment of Salmonella. These findings suggest that a great deal of labor, time, samples, and space may be saved if O157, O26, and Salmonella are enriched simultaneously with UPB at 42°C.


1992 ◽  
Vol 55 (10) ◽  
pp. 792-795
Author(s):  
KARSTEN FEHLHABER ◽  
RÜDIGER-THOMAS HESELER

Pasteurized milk, liquid egg, minced meat, and various salads were artificially contaminated with varying numbers of cells from six Escherichia coli (E. coli) strains able to produce heat-stable enterotoxins (ST). The ST-producing E. coli were detected by the following procedure within 24 h without isolation by cultivation. After enrichment of the food sample in GN broth (4 h at 37°C), the material was transferred to brain heart infusion broth, incubated (16–18 h at 37°C), centrifuged (20 min, 7000 g) and heated to 80°C for 10 min, the supernatant was tested with the infant mouse test. The sensitivity (= ratio of detectable E. coli per total microbial numbers in the food sample) of the test procedure was high even in many food samples with a considerable competitive microbial flora. The procedure was used to test 419 routine food samples. Enterotoxigenic bacteria were found in 7 samples of liquid egg and 4 samples of salad. The test is recommended as a rapid screening test in food control.


2006 ◽  
Vol 69 (1) ◽  
pp. 12-16 ◽  
Author(s):  
GURBUZ GUNES ◽  
L. K. BLUM ◽  
J. H. HOTCHKISS

Dense-phase carbon dioxide (CO2) treatments in a continuous flow through system were applied to apple cider to inactivate Escherichia coli (ATCC 4157). A response surface design with factors of the CO2/product ratio (0, 70, and 140 g/kg), temperature (25, 35, and 45°C), and pressure (6.9, 27.6, and 48.3 MPa) were used. E. coli was very sensitive to dense CO2 treatment, with a more than 6-log reduction in treatments containing 70 and 140 g/kg CO2, irrespective of temperature and pressure. The CO2/product ratio was the most important factor affecting inactivation rate of E. coli. No effect of temperature and pressure was detected because of high sensitivity of the cells to dense CO2. Dense CO2 could be an alternative pasteurization treatment for apple cider. Further studies dealing with the organoleptic quality of the product are needed.


Sign in / Sign up

Export Citation Format

Share Document