scholarly journals Comparative Studies on the Chemo and Biosynthesized Nanomaterials for the Remediation of Pharmaceutical Residues in Wastewater

2020 ◽  
Vol 45 (6) ◽  
Author(s):  
C. M. Ngwu ◽  
J. C. Nnaji ◽  
S. O. Odoemelam ◽  
F. J. Amaku

In the present study, comparison was made on the wastewater remediation efficiencies of chemically and biologically synthesized magnetite and zinc oxide nanoparticles. Starchytarpheta indica (snake weed) leaf extract was used as a reducing and capping agent in the green synthesis of magnetite and zinc oxide. The synthesized nanoparticles (NPs) were characterized by X-ray diffraction studies (XRD), Field emission scanning electron microscopy (FESEM) and Fourier transform infra-red spectroscopy (FTIR). These synthesized nanoparticles were further applied in the treatment of industrial pharmaceutical effluent basically comprising amoxicillin, acetaminophen and ascorbic acid. The NPs all performed differently in the removal of these pharmaceutical active compounds. Results showed that the NPs had significant removal efficiencies for acetaminophen, ranging from 67.07 % - 93.59 %, with bio-ZnO having the highest removal efficiency and magnetite giving the least. The range of removal efficiency for ascorbic acid was 54.35 % - 100 %, Magnetite and bio-magnetite showed the highest removal efficiencies whereas bio-ZnO had the least removal rate. Wastewater treatment for the removal of amoxicillin residues with the synthesized nanoparticles was not quite significant, negative removal patterns were observed for wastewater treatment with bio-ZnO and magnetite, a removal rate of 16.82 % was obtained for treatment with bio-magnetite, ZnO NPs had the highest removal efficiency of 49.73 %. Generally, ZnO and bio-magnetite NPs displayed better removal capacities than the other NPs, with overall removal rates of 64.71 % and 48.92 % for ZnO and bio-magnetite NPs respectively.

2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Wafaa A. Mohammad ◽  
Safaa M. Ali ◽  
Nasser Farhan ◽  
Shimaa Mohamed Said

Abstract Background Chemicals have deleterious effect on the environment. The wide use of nanomaterials as products for plant protection, fertilizers, and also in water purification leads to the release of these materials to the environment. Terrestrial gastropods including snails and slugs have the ability to accumulate heavy metals in their bodies. The present study evaluates the toxic effect of zinc oxide nanoparticles on the terrestrial slug Lehmannia nyctelia. Zinc oxide nanoparticles (ZnO NPs) were prepared by thermal decomposition method. ZnO NPs are characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and ultraviolet-visible spectroscopy (UV). Slugs were treated with three different concentrations of ZnO NPs. Results A total of three animals died by the end of the experiment. Many histological alterations were detected after exposure to different concentration of ZnO NPs. Conclusions The obtained histological alterations prove the toxic effect of ZnO NPs on the animal under study.


2018 ◽  
Vol 24 (8) ◽  
pp. 5537-5542 ◽  
Author(s):  
S. M Sathiya ◽  
Gunadhor S Okram ◽  
S. Maria Dhivya ◽  
Subramanian Mugesh ◽  
Maruthamuthu Murugan ◽  
...  

The biocompatible Chitosan/Zinc oxide (CS/ZnO) nanocomposites (NCs) material was synthesized via a simple and versatile microwave assisted wet synthesis method. After the incorporation of CS in the ZnO nanoparticles (NPs), the crystalline structure of the modified NPs was retained in the NCs and it was clearly exposed in the X-ray diffraction (XRD) measurements. The Zeta potential measurement of CS/ZnO nanocomposites (NCs) shows more stability than ZnO NPs. The Field Emission Scanning Electron Microscopy (FE-SEM) measurements depict the formation of cauliflower like structure after the integration of CS in the ZnO NPs. The interaction between ZnO molecules in CS becomes more compact and is confirmed in the Fourier Transform Infrared Spectroscopy (FTIR) measurement. Bacterial activity was increased gradually with the CS/ZnO content and was analytically stronger against Gram-positive cells. This study has conclusively proved that reactive oxygen species (ROS) such as •OH, •O2− , and H2O2 were significantly produced from aqueous suspension of CS/ZnO and were primarily responsible for the bactericidal activity.


2018 ◽  
Vol 42 (1) ◽  
pp. 18-22
Author(s):  
Khitam S. S

     This research aims to prepare ZnO NPs by using chemical bath deposition way from ZnSO4 and NaOH as starting materials. It was examined by X-ray diffraction, Scanning Electron Microscopy, Zeta potential and Fourier Transformation Infrared. Scanning Electron Microscopy images showed various morphological changes of ZnO nanoparticles obtained by the above method and the different magnification Scanning Electron Microscopy images of the nanoparticle and confirms that the Nano flowers are grown with well-defined morphology and diameters varying between 60-110 nm. The effect of Zinc oxide nanoparticles against bacteria staphylococcus aureus, E.coli and Pseudomous aeruginosa showed the ability of this substance to inhibit the growth of all types of bacteria in different concentrations. The percentage of survival bacteria was (2, 3.7 and 6%) for E.coli bacteria and (1, 1.5 and 5 %) for Pseudomous aeruginosa bacteria, while the percentage was (0.8, 1 and 1.5 %) for staphylococcus aurous respectively for all concentration.


1995 ◽  
Vol 31 (12) ◽  
pp. 171-183 ◽  
Author(s):  
M. M. Saqqar ◽  
M. B. Pescod

The performance of the primary anaerobic pond at the Alsamra Wastewater Treatment Plant in Jordan was monitored over 48 months. Overall averages for the removal efficiencies of BOD5, COD and suspended solids were 53%, 53% and 74%, respectively. An improvement in removal efficiency with increase in pond water temperature was demonstrated. A model, which takes into account the variability of raw wastewater at different locations, has been developed to describe the performance of a primary anaerobic pond in terms of a settleability ratio for the raw wastewater. The model has been verified by illustrating the high correlation between actual and predicted pond performance.


2020 ◽  
Vol 13 (1) ◽  
pp. 126
Author(s):  
Guozhen Zhang ◽  
Xingxing Huang ◽  
Jinye Ma ◽  
Fuping Wu ◽  
Tianhong Zhou

Electrochemical oxidation technology is an effective technique to treat high-concentration wastewater, which can directly oxidize refractory pollutants into simple inorganic compounds such as H2O and CO2. In this work, two-dimensionally stable anodes, Ti/RuO2-IrO2-SnO2, have been developed in order to degrade organic pollutants from pharmaceutical wastewater. Characterization by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) showed that the oxide coating was successfully fabricated on the Ti plate surface. Electrocatalytic oxidation conditions of high concentration pharmaceutical wastewater was discussed and optimized, and the best results showed that the COD removal rate was 95.92% with the energy consumption was 58.09 kW·h/kgCOD under the electrode distance of 3 cm, current density of 8 mA/cm2, initial pH of 2, and air flow of 18 L/min.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1919
Author(s):  
Elsayim Rasha ◽  
AlOthman Monerah ◽  
Alkhulaifi Manal ◽  
Ali Rehab ◽  
Doud Mohammed ◽  
...  

Recently, concerns have been raised globally about antimicrobial resistance, the prevalence of which has increased significantly. Carbapenem-resistant Klebsiella pneumoniae (KPC) is considered one of the most common resistant bacteria, which has spread to ICUs in Saudi Arabia. This study was established to investigate the antibacterial activity of biosynthesized zinc oxide nanoparticles (ZnO-NPs) against KPC in vitro and in vivo. In this study, we used the aqueous extract of Acacia nilotica (L.) fruits to mediate the synthesis of ZnO-NPs. The nanoparticles produced were characterized by UV-vis spectroscopy, zetasizer and zeta potential analyses, X-ray diffraction (XRD) spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and transmission electron microscopy (TEM). The antimicrobial activity of ZnO-NPs against KPC was determined via the well diffusion method, and determining minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), the results showed low MIC and MBC when compared with the MIC and MBC of Imipenem and Meropenem antibiotics. The results of in vitro analysis were supported by the results upon applying ZnO-NP ointment to promote wound closure of rats, which showed better wound healing than the results with imipenem ointment. The biosynthesized ZnO-NPs showed good potential for use against bacteria due to their small size, applicability, and low toxicity to human cells.


Author(s):  
Bushra H. Shnawa ◽  
Samir M. Hamad ◽  
Azeez A. Barzinjy ◽  
Payman A. Kareem ◽  
Mukhtar H. Ahmed

AbstractCystic echinococcosis is a public health problem in developing countries that practice sheep breeding extensively. In the current study, the protoscolicidal activity of biosynthesized zinc oxide nanoparticles (ZnO NPs) derived from Mentha longifolia L. leaf extracts was investigated. The resultant ZnO NPs were characterized by means of various analytical techniques, such as ultraviolet–visible (UV–Vis) spectrometry, Fourier transform infrared (FT-IR) spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX) analysis. The results showed that the ZnO NP had the highest scolicidal activity at 400 ppm concentration after 150 min of exposure time, showing 100% mortality rate. The treated protoscolices exhibited loss of viability with several morphological alterations. Hence, an easy and effective green synthesis of ZnO NPs, with efficient scolicidal potential, is reported in this study.


2010 ◽  
Vol 61 (5) ◽  
pp. 1235-1243 ◽  
Author(s):  
Y. F. He ◽  
F. R. Li ◽  
R. M. Wang ◽  
F. Y. Li ◽  
Y. Wang ◽  
...  

Xanthate was successfully grafted onto bentonite by a relatively simple solution reaction. The obtained xanthated bentonite (XBent) was characterized by FT-IR spectrophotometer, thermogravimetric analysis (TG), particle size analysis, x-ray diffraction (XRD) and scanning electron microscopy (SEM). XBent acting as a type of environmentally friendly adsorbent was applied to remove lead ions from aqueous solutions. The optimum conditions were as follows: [Pb2 + ] = 500 mg L−1, [XBent] = 2 g L−1, pH = 5.0; oscillating 60 min under 200 rpm at 25°C. The removal rate of lead was up to 99.9%. It was found that the lead(II) ions—XBent adsorption isotherm model fitted well to the Freundlich isotherm. The adsorption mechanism was also investigated by SEM and XRD, which concluded that lead ions were complexed or chelated with XBent. XBent appears to have potential to be used later in water treatment as a type of inorganic polymer reagent.


RSC Advances ◽  
2016 ◽  
Vol 6 (111) ◽  
pp. 110108-110111 ◽  
Author(s):  
Zhenghui Liu ◽  
Huifang Zhou ◽  
Jiefeng Liu ◽  
Xudong Yin ◽  
Yufeng Mao ◽  
...  

Zinc oxide nanoparticles (ZnO NPs) have been monitored in wastewater treatment plants as their potential adverse effects on functional microorganisms have been causing increasing concern.


Sign in / Sign up

Export Citation Format

Share Document