scholarly journals Textural Implications in Assessment of Physico-Mechanical behaviour of Metavolcanic Rocks from Dir Upper, north western Pakistan

Author(s):  
Muhammad Sajid ◽  
Muhammad Yaseen ◽  
Muhammad Zeeshan Ullah ◽  
Ghulam Murtaza

The Dir-Utror meta-volcanics from the south western portion of the Kohistan arc in northern Pakistan areanalyzed in term of their petrography, physico-mechanical properties. Field observations and petrography show thecollected representative samples to be fine-grained meta-andesites (FMA), coarse-grained meta-andesites (CMA) andagglomerate (AG). The relationship between petrography and physico-mechanical properties has been investigatedwhich inferred the grain size to be the major factor, alongside grains’ shape, arrangement and size distribution as wellas degree of mineral alteration significantly affecting the mechanical behavior of rocks. The CMA yield more strength(98 MPa) than FMA (93 MPa) due to its lesser degree of mineral alteration, inequigranular texture, lack of preferredmineral alignment, relatively low porosity and water absorption. The lower strength of agglomerate (57 MPa)corresponds to abundance of soft minerals (calcite), exotic rock fragments and coarse-grained texture. Based onphysico-mechanical properties including specific gravity, bulk density, aggregate impact value, Los Angeles abrasionvalue and unconfined compressive strength (UCS), these rocks fall within permissible range to be utilized for multipleengineering purposes including dimension stones and foundation materials for other civil structures. However,petrographic investigations reveal excessive amount of reactive silica in these rocks making them prone to alkali-silicareactivity in concrete works with ordinary Portland cement (OPC). Hence these rocks are not recommended for use assole aggregate material or low-alkali cement is recommended, if used.

2021 ◽  
Vol 80 (3) ◽  
pp. 1963-1980
Author(s):  
Solomon Adomako ◽  
Christian John Engelsen ◽  
Rein Terje Thorstensen ◽  
Diego Maria Barbieri

AbstractRock aggregates constitute the enormous volume of inert construction material used around the globe. The petrologic description as igneous, sedimentary, and metamorphic types establishes the intrinsic formation pattern of the parent rock. The engineering properties of these rocks vary due to the differences in the transformation process (e.g. hydrothermal deposits) and weathering effect. The two most common mechanical tests used to investigate the performance of aggregates are the Los Angeles (LA) and micro-Deval (MD) tests. This study reviewed the geological parameters (including mineralogy, grain and crystal size, grain shape, and porosity) and the relationship to Los Angeles and micro-Deval tests. It was found that high content of primary minerals in rocks (e.g. quartz and feldspar) is a significant parameter for performance evaluation. Traces of secondary and accessory minerals also affect the performance of rocks, although in many cases it is based on the percentage. Furthermore, some studies showed that the effect of mineralogic composition on mechanical strength is not sufficient to draw final conclusions of mechanical performance; therefore, the impact of other textural characteristics should be considered. The disposition of grain size and crystal size (e.g. as result of lithification) showed that rocks composed of fine-grain textural composition of ≤ 1 mm enhanced fragmentation and wear resistance than medium and coarse grained (≥ 1 mm). The effect of grain shape was based on convex and concave shapes and flat and elongated apexes of tested samples. The equidimensional form descriptor of rocks somehow improved resistance to impact from LA than highly flat and elongated particles. Lastly, the distribution of pore space investigated by means of the saturation method mostly showed moderate (R = 0.50) to strong (R = 0.90) and positive correlations to LA and MD tests.


Hydrocarbon gels contain a number of materials, such as rubber, greases, saponified mineral oils, etc., of great interest for various engineering purposes. Specific requirements in mechanical properties have been met by producing gels in appropriately chosen patterns of constituent components of visible, colloidal, molecular and atomic sizes, ranging from coarse-grained aggregates, represented by sponges, foams, emulsions, etc.; to fine-grained and apparently homogeneous ones, represented by optically clear compounds. The engineer who has to deal with the whole range of such materials will adopt a macroscopic point of view, based on an apparent continuity of all the material structures and of the distributions in space and time of the displacements and forces occurring under mechanical actions. It has been possible to determine these distributions in the framework of a comprehensive scheme in which the fundamental principles of the mechanics of continuous media provide the theoretical basis, and a testing instrument of new design, termed Rheogoniometer, the means of experimental measurement (Weissenberg 1931, 1934, 1946, 1947, 1948).


1996 ◽  
Vol 33 (5) ◽  
pp. 715-728 ◽  
Author(s):  
R.N. Adair ◽  
R.A. Burwash

The middle Cretaceous Crowsnest Formation west of Coleman, Alberta, is composed of bedded alkaline volcanic deposits containing heterolithic volcanic rock fragments and crystal clasts. Comparison with modern examples of subaerial pyroclastic rocks suggests that pyroclastic flows, surges, fallout of material from vertical eruption columns, and minor mud flows emplaced the deposits. Textural evidence in the form of plastically deformed volcanic fragments, chilled deposit margins, baked rock fragment margins, recrystallization, and the presence of charred wood and charred wood molds indicate emplacement at elevated temperature. Massive deposits containing a fine-grained basal zone are interpreted as the product of pyroclastic flows, whereas deposits characterized by a block-rich base overlain by a thin layer of block-depleted stratified material are interpreted as the product of density-stratified surges. Deposits exhibiting pronounced stratification were emplaced by ash-cloud surges. Thickly bedded breccias exhibiting rheomorphic textures were emplaced as vent-proximal pyroclastic flows. Deposits characterized by parallel beds and graded structures are interpreted as fallout tephra deposits, and deposition by lahars is indicated by coarse-grained beds that lack evidence for emplacement at elevated temperatures. The eruptions of the Crowsnest Formation were cyclical. An initial explosive phase generated deposits by pyroclastic flows, surges, fallout, and lahars. As an eruption progressed, it evolved into a poorly gas-charged effusive stage that emplaced coarsely porphyritic domes, plugs, spines, and vent-proximal lava flows. Subsequent eruptions destroyed the effusive vent facies deposits and produced abundant heterolithic clasts typical of the formation.


2011 ◽  
Vol 409 ◽  
pp. 474-479 ◽  
Author(s):  
C. Chan ◽  
J.L. McCrea ◽  
G. Palumbo ◽  
Uwe Erb

Monolithic and multilayered iron electrodeposits were successfully synthesized by the pulse plating electrodeposition method. Electron microscopy and Vickers microhardness measurements were used to investigate the microstructure and mechanical properties of the iron electrodeposits produced. Two types of monolithic iron coatings were produced, one with a coarse grained, columnar structure and the other with an ultra-fine grained structure. Hall-Petch type grain size strengthening was observed in these monolithic coatings. Multilayered iron coatings composed of alternating layers of coarse grained and fine grained structures were also produced. The hardness value of the multilayered coatings falls between the hardness values for the two types of monolithic coatings produced. This study has demonstrated the possibility of applying a multilayered structure design to tailor the microstructure and mechanical properties of electrodeposited iron coatings.


2010 ◽  
Vol 152-153 ◽  
pp. 1313-1316
Author(s):  
Guo Jun Hu ◽  
Zhi Quan Hong

In this paper, the compression test on the bulk nanocrystalline sliver ( n Ag) with average grain size of 50 nm was made. The stress-strain curves under different strain rates were obtained by test. The test results show that the mechanical behavior of n Ag is rate-dependent, and the dynamic compress yield stress are about 1.5 times of that n Ag in static test condition; The effect of strain harding on n Ag is smaller than that of coarse-grained silver (c Ag) in plastic deformation; The relationship between the yield strength and the logarithm of strain rate is approximately linear.


Author(s):  
C. S. McDowell ◽  
S. N. Basu

Oxidation resistance of stainless steels, which rely on the formation of a Cr2O3 (chromia) scale, can be further improved through minor alloying additions such as Al or Si, or by application of coatings to the exposed surfaces. Although, additions of Si to austenitic steels have demonstrated an improvement in oxidation resistance, high Si contents can be detrimental to the mechanical properties of these alloys. The application of a silica coating on the surface of the stainless steel provides improved oxidation resistance without detrimental effects on the mechanical properties. This study examines the effect of the grain size of the stainless steel on the effectiveness of a silica coating as an oxidation barrier.Fully austenitic stainless steel of composition Fe-18(wt%)Cr-20Ni-1.5Mn was produced in both coarsegrained and fine-grained form. The coarse-grained alloy, with a grain size of approximately 100 μm, was produced by casting and hot rolling. The fine-grained alloy, with a grain size of approximately 5 μm, was produced by rapid solidification powder processing, followed by consolidated by hot isostatic pressing and swaging.


2019 ◽  
Vol 26 (06) ◽  
pp. 1850199
Author(s):  
BAOSEN ZHANG ◽  
JIYING WANG ◽  
SHUAISHUAI ZHU ◽  
QIANGSHENG DONG ◽  
ZHANGZHONG WANG

The gradient fine-grained oxygen-boosting layer was prepared on equal channel angular processing (ECAP)-treated titanium with thermal oxidation and oxygen boost diffusion process, and tribological properties were systematically characterized. Results show that the as-prepared boosting layer consists of surface coarse-grained region, and inner fine-grained region. The corresponding thickness and mechanical properties further increase compared to those of virgin titanium. The oxygen-boosting layer reveals excellent anti-wear properties, the dominant wear mechanism of which is abrasive.


MRS Advances ◽  
2016 ◽  
Vol 1 (12) ◽  
pp. 811-816 ◽  
Author(s):  
Myeong-heom Park ◽  
Akinobu Shibata ◽  
Nobuhiro Tsuji

ABSTRACTIt is well-known that dual phase (DP) steels composed of ferrite and martensite have good ductility and plasticity as well as high strength. Due to their excellent mechanical properties, DP steels are widely used in the industrial field. The mechanical properties of DP steels strongly depend on several factors such as fraction, distribution and grain size of each phase. In this study, the grain size effect on mechanical properties of DP steels was investigated. In order to obtain DP structures with different grain sizes, intercritical heat treatment in ferrite + austenite two-phase region was carried out for ferrite-pearlite structures having coarse and fine ferrite grain sizes. These ferrite-pearlite structures with coarse and fine grains were fabricated by two types of heat treatments; austenitizing heat treatment and repetitive heat treatment. Ferrite grain sizes of the specimens heat-treated by austenitizing and repetitive heat treatment were 47.5 µm (coarse grain) and 4.5 µm (fine grain), respectively. The ferrite grain sizes in the final DP structures fabricated from the coarse-grained and fine-grained ferrite-pearlite structures were 58.3 µm and 4.1µm, respectively. The mechanical behavior of the DP structures with different grain sizes was evaluated by an uniaxial tensile test at room temperature. The local strain distribution in the specimens during tensile test was obtained by a digital image correlation (DIC) technique. Results of the tensile test showed that the fine-grained DP structure had higher strength and larger elongation than the coarse-grained DP structure. It was found by the DIC analysis that the fine-grained DP structure showed homogeneous deformation compared with the coarse-grained DP structure.


2014 ◽  
Vol 939 ◽  
pp. 60-67 ◽  
Author(s):  
Choncharoen Sawangrat ◽  
Osamu Yamaguchi ◽  
Sanjay Kumar Vajpai ◽  
Kei Ameyama

Co-Cr-Mo alloy powders were subjected to controlled mechanical milling at room temperature under Ar atmosphere to fabricate bimodal microstructure in the MM powders, having nanosized grains in the surface region and micron-sized coarse grains in the center of the milled powders. Subsequently, the MM powder was compacted by spark-plasma sintering (SPS) process. The sintered compacts indicated two structure areas: (i) ultra-fine grained (UFG) regions, called shell, and (ii) the coarse grained regions called core. The shell and the core correspond to the surface and center of the MM powders, respectively. The shell regions established a continuous three dimensional network of high strength ultra-fine grained regions, which surrounded the discrete coarse grained ductile regions. Such a microstructure is referred as Harmonic Structure. The sintered Co-Cr-Mo alloy compacts exhibited outstanding mechanical properties. The yield strength increased from 605 to 635 MPa, and ultimate tensile strength increased from 1201 to 1283 MPa. Moreover, the elongation was maintained more or less same as that of coarse grained compacts. Therefore, the harmonic structure design leads to the new generation microstructure of Co-Cr-Mo alloy, which demonstrates outstanding mechanical properties, i.e. superior strength and excellent ductility as compared to conventional materials. Keywords: mechanical milling, Co-Cr-Mo alloys, mechanical properties, harmonic structure.


2015 ◽  
Vol 794 ◽  
pp. 166-173 ◽  
Author(s):  
Markus Bergmann ◽  
Andreas Sterzing ◽  
Dirk Landgrebe

Designing material characteristics by grain refinement using Severe Plastic Deformation (SPD) is an attractive way to create outstanding material properties. This paper presents a unique method which combines SPD and impact extrusion. The extrusion die is designed to create additional material deformation to a defined depth, resulting in a gradient from ultra-fine grained to coarse grained microstructure. Due to the large gradient the method is called gradation extrusion. The paper presents a new analytical calculation method and a numerical evaluation of the strain, showing the relationship between tool design and achievable effects and provides initial experimental results.


Sign in / Sign up

Export Citation Format

Share Document