scholarly journals Alizarin Red S’in Silika Jel Üzerindeki Çözeltiden Adsorpsiyonu: Denge İzotermleri ve Kinetik İncelemeler

2021 ◽  
Vol 10 (2) ◽  
pp. 223-232
Author(s):  
İbrahim GÖZETEN ◽  
Ali SAVRAN
Keyword(s):  
Author(s):  
А.Г. Кутихин ◽  
Д.К. Шишкова ◽  
Е.А. Великанова ◽  
А.В. Миронов ◽  
Е.О. Кривкина ◽  
...  

Цель исследования - оценка токсического действия сферических кальций-фосфатных бионов и игольчатых кальций-фосфатных бионов на предварительно поврежденную интиму аорты крыс. Методика. Токсическое действие сферических кальций-фосфатных бионов и игольчатых кальций-фосфатных бионов на поврежденную интиму брюшной аорты крыс линии Wistar (n = 10 на группу) оценивали путем их однократного внутривенного введения после баллонной ангиопластики с эксплантацией поврежденного участка аорты через 5 нед. Биоптаты анализировали: 1) классическими гистологическими методами (окрашивание гематоксилин-эозином, ализариновым красным, по Вейгерту-ван Гизону и по Расселлу-Мовату); 2) иммунофлюоресцентным окрашиванием криосрезов (сочетанное окрашивание на CD31 и CD34, на CD31 и α-гладкомышечный актин (α-ГМА), на виментин и α-ГМА, на коллаген IV типа и α-ГМА). Для оценки влияния системного воспаления на КФБ-индуцированную эндотелиотоксичность определяли содержание моноцитарного хемоаттрактантного белка (МСР-1/CCL2) и церулоплазмина в сыворотке крови прооперированных крыс посредством иммуноферментного анализа. Результаты. Сферические кальций-фосфатные бионы и игольчатые кальций-фосфатные бионы вызывали выраженную гипертрофию интимы брюшной аорты в 90% (9 из 10 крыс) и 80% случаев (8 из 10 крыс) соответственно, в то время как частота гипертрофии в группе контрольных крыс составила лишь 10% (1 из 10 крыс). Неоинтима при экспозиции интимы брюшной аорты обоим типам бионов характеризовалась переходом фенотипа клеток мезенхимального ряда с контрактильного (α-ГМА-положительные и виментин-отрицательные гладкомышечные клетки) и неактивного (α-ГМА-отрицательные и виментин-положительные фибробласты) на активный синтетический (α-ГМА- и виментин-положительные клетки), что приводило к формированию значительных количеств экстрацеллюлярного матрикса. Внутривенное введение сферических кальций-фосфатных бионов и игольчатых кальций-фосфатных бионов не приводило к изменению уровней МСР-1/CCL2 и церулоплазмина в сыворотке крови, что свидетельствовало об отсутствии их возможного влияния на развитие системного воспалительного ответа. Заключение. Внутривенное введение кальций-фосфатных бионов после повреждения интимы брюшной аорты крыс путем баллонной ангиопластики вызывает развитие гипертрофии интимы, частота и выраженность которой не зависит от формы кальций-фосфатных бионов и которая характеризуется переходом фенотипа клеток мезенхимального ряда из контрактильного/неактивного на активный синтетический. При этом эндотелиотоксическое действие кальций-фосфатных бионов обусловлено их непосредственным воздействием на эндотелий, а не развитием системного воспаления. Purpose. To compare toxicity of spherical calcium phosphate bions (SCPB) and needle-shaped calcium phosphate bions (NCPB) to injured intima of rat aortas. Methods. Toxicity of SCPB and NCPB to injured abdominal aortas of Wistar rats (n = 10 per group) was evaluated using intravenous administration of the bions after balloon angioplasty. Rats were sacrificed five weeks postoperation, and an injured aortic segment was excised. Tissue preparations were stained with hematoxylin and eosin, alizarin red S, Weigert-van Gieson, and Movat’s pentachrome stains. Selected tissue samples were then examined using combined immunofluorescence staining (CD31/CD34, CD31/α-smooth muscle actin (α-SMA), α-SMA/vimentin, and α-SMA/collagen IV). Possible influence of systemic inflammation on CPB-induced endothelial toxicity was assessed by measuring monocyte chemoattractant protein-1 and ceruloplasmin in rat serum using the enzyme-linked immunosorbent assay. Results. Intravenous administration of SCPB or NCPB provoked intimal hyperplasia in 90% (9 of 10) and 80% (8 of 10) of rats vs. 10% (1 of 10) in the control group. The neointima was characterized by a phenotypic switch of mesenchymal cells, i.e. transition of a contractile (α-SMA-positive, vimentin-negative vascular smooth muscle cells) and quiescent (α-SMA-negative vimentin-positive fibroblasts) to an active synthetic phenotype (double-positive cells), which resulted in deposition of the extracellular matrix. Neither SCPB nor NCPB changed serum levels of pro-inflammatory molecules, МСР-1/CCL2, and ceruloplasmin. Conclusions. Intravenous administration of CPB upon balloon-induced vascular injury caused intimal hyperplasia regardless of the CPB shape. Hyperplasia foci were characterized by a switch of mesenchymal cells from a contractile/quiescent to an active synthetic phenotype. Endothelial toxicity of CPBs was defined by their direct cytotoxic action rather than induction of systemic inflammation.


2020 ◽  
Vol 25 (45) ◽  
pp. 4806-4812 ◽  
Author(s):  
Zhibo Sun ◽  
Fei Wu ◽  
Yue Yang ◽  
Feng Liu ◽  
Fengbo Mo ◽  
...  

Background: MicroRNAs have recently been recognized to be engaged in the development of bone diseases. Objective: This study was performed to elucidate the effects of miR-144-3p on proliferation and osteogenesis of mesenchymal stem cells (MSCs) from the patients with steroid-associated osteonecrosis (ONFH) and its related mechanism. Method: The expression level of miR-144-3p in the MSCs from the proximal femur of the patients was examined by Real-time PCR. The cell proliferation ability was assayed by MTT. The differentiation ability of MSCs was assayed by Alizarin Red S (ARS) staining. The interaction between miR-144-3p and frizzled4 (FZD4) was investigated by Real-time PCR, western blot and luciferase reporter assay. Results: ONFH samples had the obviously high expression of miR-144-3p compared to the control. MiR-144-3p had a negative effect on the proliferation and osteogenesis of MSCs. Via targeting FZD4, miR-144-3p decreased β-catenin nuclear translocation, the transcription of RUNX2 and COL1A1. Over-expression of FZD4 partially reversed miR-144-3p-induced decrease in the proliferation and osteogenesis of MSCs. Conclusion: MiR-144-3p might play an important role in the development of ONFH and might be used as a novel class of therapeutic targets for this disease.


2020 ◽  
Vol 26 (26) ◽  
pp. 3147-3160
Author(s):  
Saeedeh Ahmadipour ◽  
Jaleh Varshosaz ◽  
Batool Hashemibeni ◽  
Leila Safaeian ◽  
Maziar Manshaei

Background: Polyhedral oligomeric silsesquioxane (POSS) is a monomer with silicon structure and an internal nanometric cage. Objective: The purpose of this study was to provide an injectable hydrogel that could be easily located in open or closed bone fractures and injuries, and also to reduce the possible risks of infections caused by bone graft either as an allograft or an autograft. Methods: Various formulations of temperature sensitive hydrogels containing hydroxyapatite, Gelrite, POSS and platelets rich plasma (PRP), such as the co-gelling agent and cell growth enhancer, were prepared. The hydrogels were characterized for their injectability, gelation time, phase transition temperature and viscosity. Other physical properties of the optimized formulation including compressive stress, compressive strain and Young’s modulus as mechanical properties, as well as storage and loss modulus, swelling ratio, biodegradation behavior and cell toxicity as rheometrical parameters were studied on human osteoblast MG-63 cells. Alizarin red tests were conducted to study the qualitative and quantitative osteogenic capability of the designed scaffold, and the cell adhesion to the scaffold was visualized by scanning electron microscopy. Results: The results demonstrated that the hydrogel scaffold mechanical force and injectability were 3.34±0.44 Mpa and 12.57 N, respectively. Moreover, the scaffold showed higher calcium granules production in alizarin red staining compared to the control group. The proliferation of the cells in G4.5H1P0.03PRP10 formulation was significantly higher than in other formulations (p<0.05). Conclusion: The optimized Gelrite/Hydroxyapatite/POSS/PRP hydrogel scaffold has useful impacts on osteoblasts activity, and may be beneficial for local drug delivery in complications including a break or bone loss.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sajad Bahrami ◽  
Nafiseh Baheiraei ◽  
Mostafa Shahrezaee

AbstractA variety of bone-related diseases and injures and limitations of traditional regeneration methods require new tissue substitutes. Tissue engineering and regeneration combined with nanomedicine can provide different natural or synthetic and combined scaffolds with bone mimicking properties for implantation in the injured area. In this study, we synthesized collagen (Col) and reduced graphene oxide coated collagen (Col-rGO) scaffolds, and we evaluated their in vitro and in vivo effects on bone tissue repair. Col and Col-rGO scaffolds were synthesized by chemical crosslinking and freeze-drying methods. The surface topography, and the mechanical and chemical properties of scaffolds were characterized, showing three-dimensional (3D) porous scaffolds and successful coating of rGO on Col. The rGO coating enhanced the mechanical strength of Col-rGO scaffolds to a greater extent than Col scaffolds by 2.8 times. Furthermore, Col-rGO scaffolds confirmed that graphene addition induced no cytotoxic effects and enhanced the viability and proliferation of human bone marrow-derived mesenchymal stem cells (hBMSCs) with 3D adherence and expansion. Finally, scaffold implantation into rabbit cranial bone defects for 12 weeks showed increased bone formation, confirmed by Hematoxylin–Eosin (H&E) and alizarin red staining. Overall, the study showed that rGO coating improves Col scaffold properties and could be a promising implant for bone injuries.


Author(s):  
Yun Zhou ◽  
Li-Long Wei ◽  
Rui-Ping Zhang ◽  
Cheng-Wu Han ◽  
Yongtong Cao

AbstractLipid metabolism is closely related to the improvement of vascular calcification (VC) in chronic kidney disease (CKD). Globular adiponectin (gAd) has been reported to be involved in the development of VC in CKD, but the detailed regulatory role remains unclear. The present study is aimed to investigate the biological function and the underlying regulation mechanism of gAd in the process of VC during CKD. Vascular smooth muscle cells (VSMCs) calcification was determined by Alizarin Red S staining. Protein signaling related with VC was tested by western blotting. The expression and intracellular localization of runt-related transcription factor 2 (Runx2) was detected by immunofluorescence and uraemic rat with VC was established by a two-step nephrectomy. Combined with the results of Alizarin Red S staining, we discovered that β-glycerophosphate (β-Gp)-induced the osteoblastic differentiation of VSMCs was significantly reversed by gAd treatment. Along with the VSMCs calcification and the increase of Runx2 in β-Gp-exposed VSMCs, the activities of protein kinase B (AKT) and Wnt/β-catenin pathway were enhanced, but that were counteracted by the exposure of gAd in rat and human VSMCs. After administration with agonists of the Wnt (SKL2001) and AKT (SC79), there appeared more osteoblastic differentiation and higher expression of Runx2 in gAd-treated VSMCs, but showing lower impact in the presence of SC79 than that in the presence of SKL2001. In the in vivo experiments, intravenous injection of gAd also significantly inhibited VC and Runx2 level in uraemic rat in a dose-dependent manner, possibly through regulating Wnt/β-catenin pathway. This study demonstrates that gAd ameliorates osteoblastic differentiation of VSMCs possibly by blocking PI3K/AKT and Wnt/β-catenin signaling transduction. The findings provide an important foundation for gAd in treating VC in kidney diseases.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1831
Author(s):  
Thitianan Kulsirirat ◽  
Sittisak Honsawek ◽  
Mariko Takeda-Morishita ◽  
Nuttanan Sinchaipanid ◽  
Wanvisa Udomsinprasert ◽  
...  

Andrographolide is a labdane diterpenoid herb, which is isolated from the leaves of Andrographis paniculata, and widely used for its potential medical properties. However, there are no reports on the effects of andrographolide on the human suprapatellar fat pad of osteoarthritis patients. In the present study, our goal was to evaluate the innovative effects of andrographolide on viability and Tri-lineage differentiation of human mesenchymal stem cells from suprapatellar fat pad tissues. The results revealed that andrographolide had no cytotoxic effects when the concentration was less than 12.5 µM. Interestingly, andrographolide had significantly enhanced, dose dependent, osteogenesis and chondrogenesis as evidenced by a significantly intensified stain for Alizarin Red S, Toluidine Blue and Alcian Blue. Moreover, andrographolide can upregulate the expression of genes related to osteogenic and chondrogenic differentiation, including Runx2, OPN, Sox9, and Aggrecan in mesenchymal stem cells from human suprapatellar fat pad tissues. In contrast, andrographolide suppressed adipogenic differentiation as evidenced by significantly diminished Oil Red O staining and expression levels for adipogenic-specific genes for PPAR-γ2 and LPL. These findings confirm that andrographolide can specifically enhance osteogenesis and chondrogenesis of mesenchymal stem cells from human suprapatellar fat pad tissues. It has potential as a therapeutic agent derived from natural sources for regenerative medicine.


2021 ◽  
pp. 1-9
Author(s):  
Mosha Cheng ◽  
Qing Zhou

As a histone methyltransferase, enhancer of zeste homolog 2 (EZH2), suppresses osteoblast maturation and is involved in inflammation. However, the role of EZH2 in human periodontal ligament stem cells (PDLSCs) under inflammation still needs to be further investigated. This study aimed to identify the underlying mechanisms and explore the function of EZH2 in PDLSC osteogenesis under inflammation. PDLSCs were treated with sh-EZH2, DZNep or DKK1 under inflammation. The alkaline phosphatase (ALP) activity, alizarin red staining, and osteogenesis-related protein levels were analyzed. Lipopolysaccharide (LPS)-induced inflammation restrained osteogenic differentiation. Under inflammation, the upregulation of EZH2 suppressed the expression of osteogenic markers, including osteocalcin, runt-related transcription factor 2, and bone morphogenetic protein-2, the activity of ALP, and the accumulation of mineralization through the Wnt/β-catenin pathway. EZH2 knockdown inhibited the levels of proinflammatory cytokines such as interleukin-6 and tumor necrosis factor-α. These results suggested that LPS-induced overexpression of EZH2 suppressed PDLSC osteogenesis under inflammatory conditions through the Wnt/β-catenin pathway. These findings give new insights into the physiological differentiation and pathological inflammation of PDLSC osteogenesis, and provide an underlying therapeutic target for periodontitis.


TH Open ◽  
2021 ◽  
Vol 05 (02) ◽  
pp. e113-e124
Author(s):  
Elsa Wilma Böhm ◽  
Maria Pavlaki ◽  
Georgios Chalikias ◽  
Dimitrios Mikroulis ◽  
George S. Georgiadis ◽  
...  

Abstract Background Intimal calcification typically develops in advanced atherosclerosis, and microcalcification may promote plaque progression and instability. Conversely, intraplaque hemorrhage and erythrocyte extravasation may stimulate osteoblastic differentiation and intralesional calcium phosphate deposition. The presence of erythrocytes and their main cellular components (membranes, hemoglobin, and iron) and colocalization with calcification has never been systematically studied. Methods and Results We examined three types of diseased vascular tissue specimens, namely, degenerative aortic valve stenosis (n = 46), atherosclerotic carotid artery plaques (n = 9), and abdominal aortic aneurysms (n = 14). Biomaterial was obtained from symptomatic patients undergoing elective aortic valve replacement, carotid artery endatherectomy, or aortic aneurysm repair, respectively. Serial sections were stained using Masson–Goldner trichrome, Alizarin red S, and Perl's iron stain to visualize erythrocytes, extracelluar matrix and osteoid, calcium phosphate deposition, or the presence of iron and hemosiderin, respectively. Immunohistochemistry was employed to detect erythrocyte membranes (CD235a), hemoglobin or the hemoglobin scavenger receptor (CD163), endothelial cells (CD31), myofibroblasts (SMA), mesenchymal cells (osteopontin), or osteoblasts (periostin). Our analyses revealed a varying degree of intraplaque hemorrhage and that the majority of extravasated erythrocytes were lysed. Osteoid and calcifications also were frequently present, and erythrocyte membranes were significantly more prevalent in areas with calcification. Areas with extravasated erythrocytes frequently contained CD163-positive cells, although calcification also occurred in areas without CD163 immunosignals. Conclusion Our findings underline the presence of extravasated erythrocytes and their membranes in different types of vascular lesions, and their association with areas of calcification suggests an active role of erythrocytes in vascular disease processes.


2021 ◽  
Vol 9 (4) ◽  
pp. 673
Author(s):  
Jiah Yeom ◽  
Seongho Ma ◽  
Young-Hee Lim

Osteoblast differentiation is important for the development of bone and the maintenance of bone density. Propionibacterium freudenreichii is a probiotic with an anti-inflammatory property. The aim of this study was to investigate the enhancement effect of P. freudenreichii MJ2 (MJ2) isolated from raw milk on osteoblast differentiation, mineralization, and its signaling pathway. For in vitro and in vivo experiments, human fetal osteoblastic cell line hFOB 1.19 and an ovariectomized rat model were used, respectively. Expression levels of genes and proteins related to osteoblast differentiation and mineralization were measured by real-time polymerase chain reaction (qPCR) and Western blotting, respectively. Alizarin red S staining was performed to measure osteoblast mineralization. Heat-killed MJ2 (hkMJ2)-treated cells showed significantly increased osteoblast differentiation via an increase in the osteoprotegerin (OPG)/receptor activator of nuclear factor-κB ligand (RANKL) ratio and significantly increased osteoblast mineralization by stimulating the expression of bone morphogenetic protein 2 and runt-related transcription factor 2. Additionally, oral administration of live or heat-killed MJ2 to ovariectomized rats inhibited osteoporosis-induced bone loss. Specifically, surface proteins isolated from MJ2 promoted osteoblast differentiation and mineralization. In conclusion, MJ2 enhanced osteoblast differentiation and mineralization through the OPG/RANKL signaling pathway and the effective component of MJ2 might be its surface proteins.


Sign in / Sign up

Export Citation Format

Share Document