scholarly journals FRACTAL MODEL OF ESTIMATING QUALITY OF COLD WORKED FUEL CLADDING TUBES

2021 ◽  
pp. 57-63
Author(s):  
V.S. Vakhrusheva ◽  
V.M. Volchuk ◽  
N.V. Hruzin ◽  
I.A. Tiutieriev

A possibility was considered concerning estimation of grain anisomery in the structure of fuel cladding tubes of corrosion-resistant 026Cr16Ni15Mo3Nb steel of austenitic class rolled according to two flow charts: regular and intensive technologies using fractal formalism. Role of grain boundary hardening during cold plastic deformation was analyzed by studying the effect of the fractal dimension of grains D and their boundaries Dg on 0.2, w, and 5. The best correlation among those that were considered was observed between relative elongation and fractal dimensions of the grain structure (R2 = 0.90). The smallest correlation was observed with the yield stress (R2 = 0.64). It is because of variation of plastic flow processes towards a decrease in the degree of hardening in the material rolled according to the intensive technology. Cold deformation results in refining of the average grain size from 15.50 to 15.42 µm. In this case, extent of the grain boundary length L increased by 17.62% at an iteration step  commensurate with the average grain size which is indicated by a change in the fractal dimension according to L ~ δ1-D. Degree of the grain structure inhomogeneity was estimated using ratios of self-similarity of regions of fractal dimensions of the structure. The obtained results on the level of mechanical properties of fuel cladding tubes made of austenitic steel indicate advantage of the intensive technology over regular one that was confirmed by results of fractal modeling.

2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2021 ◽  
Vol 1016 ◽  
pp. 1503-1509
Author(s):  
Kosuke Ueki ◽  
Soh Yanagihara ◽  
Kyosuke Ueda ◽  
Masaaki Nakai ◽  
Takayoshi Nakano ◽  
...  

The Co-20Cr-15W-10Ni (CCWN, mass%) alloy has excellent corrosion resistance and strength-ductility balance and is applied in almost all balloon-expandable stent platforms. To further reduce the invasiveness of stent placement, it is necessary to reduce the diameter of the stent. That is, both high strength and high ductility should be achieved while maintaining a low yield stress. In our previous studies, it was discovered that low-temperature heat-treatment (LTHT) at 873 K improves the elongation of the CCWN alloy. In this study, we focused on the grain refinement by swaging and static recrystallization to improve the strength of the alloy. The as-swaged alloy was recrystallized at 1373–1473 K for 100–300 s, followed by LTHT. A fine grain structure with an average grain size of 3–17 μm was obtained by static recrystallization. The η-phase (M12X-M6X type precipitates, M: metallic elements, X: C and/or N) formed during the recrystallization at 1373–1448 K. The alloys recrystallized at 1448 and 1473 K had a homogeneous structure with a small variation in the grain size. On the other hand, the alloys recrystallized at 1373 and 1423 K had an inhomogeneous structure in which fine and coarse grains were mixed. Both the strength and ductility of the CCWN alloy were improved by combining high-temperature short-time recrystallization and LTHT.


2019 ◽  
Vol 51 (1) ◽  
pp. 513-530 ◽  
Author(s):  
Zhenbo Zhang ◽  
Éva Ódor ◽  
Diana Farkas ◽  
Bertalan Jóni ◽  
Gábor Ribárik ◽  
...  

Abstract Nanocrystalline materials reveal excellent mechanical properties but the mechanism by which they deform is still debated. X-ray line broadening indicates the presence of large heterogeneous strains even when the average grain size is smaller than 10 nm. Although the primary sources of heterogeneous strains are dislocations, their direct observation in nanocrystalline materials is challenging. In order to identify the source of heterogeneous strains in nanocrystalline materials, we prepared Pd-10 pct Au specimens by inert gas condensation and applied high-pressure torsion (HPT) up to γ ≅ 21. High-resolution transmission electron microscopy (HRTEM) and molecular dynamic (MD) simulations are used to investigate the dislocation structure in the grain interiors and in the grain boundary (GB) regions in the as-prepared and HPT-deformed specimens. Our results show that most of the GBs contain lattice dislocations with high densities. The average dislocation densities determined by HRTEM and MD simulation are in good correlation with the values provided by X-ray line profile analysis. Strain distribution determined by MD simulation is shown to follow the Krivoglaz–Wilkens strain function of dislocations. Experiments, MD simulations, and theoretical analysis all prove that the sources of strain broadening in X-ray diffraction of nanocrystalline materials are lattice dislocations in the GB region. The results are discussed in terms of misfit dislocations emanating in the GB regions reducing elastic strain compatibility. The results provide fundamental new insight for understanding the role of GBs in plastic deformation in both nanograin and coarse grain materials of any grain size.


2017 ◽  
Vol 266 ◽  
pp. 257-263
Author(s):  
Wassana Wichai ◽  
Rutchadakorn Isarapatanapong ◽  
Niwat Anuwongnukroh ◽  
Surachai Dechkunakorn

This study investigated four commercially available NiTi orthodontic archwires from different manufactures for their grain structure and surface roughness.Four commercially available pre-formed NiTi orthodontic archwire (Ormco, Sentalloy, Highland and NIC) with diameter 0.016 x 0.022 inch2 were tested. The wire samples were polished and etched to evaluate the morphology and structure of wire surface. Each NiTi archwire was investigated under a reflected light microscope of an Optical Microscope to analyze its grain structure and size, in longitudinal surfaces. The surfaces of wire were qualitatively examined in the secondary electron mode at common magnification (500X). The surface roughness was also evaluated by a surface roughness tester. The descriptive statistic was evaluated the mean and standard deviation of surface roughness and Medcale T-Test was to test the mean difference of the surface roughness in each brands. This study showed an average grain size of 2-8 μm for each NiTi archwire. The wire surface of Ormco and Highland showed straiations along the longitudinal axes, however Sentalloy and NIC showed small pores on the wire surface. The surface roughness was 0.09 μm for Highland, 0.25 μm for Sentalloy, 0.28 μm for Ormco and 0.46 μm for NIC archwire. The Highland was smoothest and NIC was the roughest. There were in significant (p < 0.05) difference of surface roughness of each brands. The results showed that the four manufactures NiTi archwires were different in grain size, wire surface and surface roughness. During clinical application, these archwires may exhibit different mechanical properties, such as strength, hardness, ductity, and friction because of their microstructure.


2005 ◽  
Vol 486-487 ◽  
pp. 411-414 ◽  
Author(s):  
Won Yong Kim ◽  
Jae Sung Park ◽  
Mok Soon Kim

Mechanical properties of a nano-structured Al-8Fe-2Mo-2V-1Zr alloy produced by spray forming and subsequent hot-extrusion at 420°C were investigated in terms of tensile test as a function of temperature. Warm rolling was adapted as an additional process to expect further refinement in microstructure. Well-defined equiaxed grain structure and finely distributed dispersoids with nano-scale in particle size were observed in the spray formed and hot extruded sample (as-received sample). The average grain size and particle size were measured to 500 nm and 50 nm, respectively. While it was found that warm rolling gives rise to precipitate fine dispersoids less than 10 nm without influencing the grain size of matrix phase, in the temperature range of RT∼150°C, distinguishable changes in ultimate tensile strength were not found between the as-received and warm-rolled samples. At elevated temperatures ranging from 350 to 550°C, warm-rolled sample showed a higher value of elongation than as-received one although similar values of elongation were observed between two samples at temperatures lower than 350°C.


2018 ◽  
Vol 224 ◽  
pp. 03005
Author(s):  
Ekaterina Nosova ◽  
Fedor Grechnikov ◽  
Natalia Lukonina

Sheet blanks’ structure uniformity determines their ability to sheet stamping. Level of entropy may represent the characteristic of structural uniformity. Structural entropy was received from strain curves recalculation for sheet blanks from aluminium alloys Al-2Mg and Al-6Mg are presented in the work. Stain curves were provided for blanks after cold deformation and annealing at temperatures 250, 350 И 450˚C. Estimation of grain size uniformity was made. Effect of annealing temperature on structural entropy and grain structure uniformity was found. It was shown that annealing temperature increasing leads to structural entropy decreasing. Ununiformity of grain size achieves the minimal values after annealing at temperature 350˚C for both alloys, and then ununiformity grows after annealing at temperature 450˚C.


2011 ◽  
Vol 239-242 ◽  
pp. 50-54 ◽  
Author(s):  
Guo Dong Shi ◽  
Jun Qiao

Annealing treatments at 200°C, 250 °C, 300°C, and 350°C were conducted on a twin-roll casted AZ31 sheet with an initial average grain size of 10.11 mm. Microstructure and mechanical behaviors were studied by optical microscope observation and tensile mechanical test. Expermeintal results show that grain size experienced three stage evolution during 180 min annealing at each temperature: recrystallization refinement, stabilization under dynamic balance of recrystallization and grain growth, and grain growth. The minimum average grain size of 5.96 μm was achieved after 120 min annealing at 200°C. The refined grain structure causes a decrease of ultimate tensile strength and an increase of elongation, and facilitates superplastic deformation of the material.


2011 ◽  
Vol 683 ◽  
pp. 103-112 ◽  
Author(s):  
B. Yang

The evolution of the microstructure and mechanical properties of electrodeposited nanocrystalline Ni with different annealing procedures was studied systematically. For the annealed specimens hardness decreases with increasing average grain size but the dependence changes at different grain size ranges. The specimens annealed at a low temperature show higher hardness compared to the as-deposited nanocrystalline Ni, despite an increased measured average grain size. In association with this hardening an increase in elastic modulus and a decrease in microstrain was observed after annealing. With increasing annealing temperature both the tensile strength and the fracture strain were observed to decrease, this is companied with a transition from ductile to brittle in the fracture surfaces. These results indicated that the mechanical behaviour of nanocrystalline Ni depends not only on the average grain size but also on the grain boundary structure. A change in the grain boundary state arising from annealing may be responsible for the observed increase in hardness and elastic modulus as well as the deterioration of tensile properties.


1985 ◽  
Vol 49 (353) ◽  
pp. 539-546 ◽  
Author(s):  
R. Dearnley

AbstractMeasurements of fine-grained dolerites by optical automatic image analysis are used to illustrate the effects of magnification and resolution on the values obtained for grain ‘size’, grain boundary length, surface area per unit volume, and other parameters. Within the measured range of optical magnifications (× 26 to × 3571) and resolutions (1.20 × 10−3 cm to 8.50 × 10−6 cm), it is found that the values of all grain parameters estimated by chord size analysis vary with magnification. These results are interpreted in terms of the concepts of ‘fractal dimensions’ introduced by Mandelbrot (1967, 1977). For some comparative purposes the fractal relationships may be of little significance as relative changes of size, surface area, and other parameters can be expressed adequately at given magnification(s). But for many studies, for instance in kinetics of grain growth, the actual diameter or surface area per unit volume is an important dimension. The consequences are disconcerting and suggest that it may be difficult in some instances to specify the ‘true’ measurements of various characteristics of fine-grained aggregates.


2009 ◽  
Vol 1242 ◽  
Author(s):  
Ramos A. Mitsuo ◽  
Martínez F. Elizabeth ◽  
Negrete S. Jesús ◽  
Torres-Villaseñor G.

ABSTRACTZinalco alloy (Zn-21mass%Al-2mass%Cu) specimens were deformed superplastically with a strain rate (ε) of 1×10-3 s-1 at homologous temperature (TH) of 0.68 (5 ). It was observed neck formation that indicate nonhomegeneus deformation. Grain size and grain boundaries misorientation changes, due superplastic deformation, were characterized by Orientation Imagining Microscopy (OIM) technique. It was studied three regions in deformed specimens and the results were compared with the results for a specimen without deformation. Average grain size of 1 mm was observed in non-deformed specimen and a fraction of 82% for grain boundary misorientation angles with a grain boundaries angles between 15° and 55° was found. For deformed specimen, the fraction of angles between 15° and 55° was decreced to average value of 75% and fractions of low angle (<5°) and high angle (>55°) misorientations were 10% and 15% respectively. The grain size and high fraction of grain boundary misorientation angles between 15° and 55° observed in the alloy without deformation, are favorable for grain rotation and grain boundary sliding (GBS) procces. The changes observed in the fraction of favorable grain boundary angles during superplastic deformation, shown that the superplastic capacity of Zinalco was reduced with the deformation.


Sign in / Sign up

Export Citation Format

Share Document