scholarly journals ISOLATION OF ANTIBIOTIC PRODUCING BACTERIA FROM POND SOIL, GUDLAVALLERU

Author(s):  
Sharmila Donepudi

Soil being a major reservoir for microorganisms it is a source of interest for isolation of antibiotic producing organisms. The emergence of antibiotic resistance and need for better, broad spectrum antibiotics is always in high demand. In the present study, antibiotic producing bacteria were isolated from a local soil sample. Total ten soil samples were collected from local pond aseptically and subjected to serial dilution. Crowded plate technique was employed for the isolation of the colony. Total five isolated were isolated which exhibited zone of inhibition around the colony. The isolated colonies were subjected to morphological, microscopical and biochemical characterization. All five colonies were found to be gram positive, non-sporulating organisms and found they belong to the Actinobacteria class. The isolated colonies were subjected to screening for antimicrobial activity against Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis and Yeast by perpendicular streak method. The primary screening results conclude that except one colony all have good antimicrobial activity. One colony found to be highly potential activity which had inhibition towards gram positive, gram negative, sporulating and fungal activity. This study may contribute in providing information on the antibiotic producing microorganisms in soil. Further characterization, purification, and structural elucidation are recommended to know the novelty, quality and commercial value of these antibiotics.

2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
Anupama Sapkota ◽  
Aishwarya Thapa ◽  
Anupa Budhathoki ◽  
Muskan Sainju ◽  
Prativa Shrestha ◽  
...  

Actinomycetes are Gram-positive, facultative anaerobic fungus-like filamentous bacteria which remain on the top of the natural antibiotic producers. Due to the climatic and geographical diversity of Nepal, a wide range of microorganisms with potent source of antimicrobials are available. The objective of this study was to isolate, identify, and screen the potential antimicrobial-producing actinomycetes from soils covering different altitude range of Nepal. Forty-one isolates of actinomycetes were isolated from 11 soil samples collected from different locations in Nepal with altitude ranging from 1500 to 4380 meters. The isolates were identified on the basis of morphological study, different sugar utilization, protein utilization, and hydrolysis tests. They were also characterized on the basis of temperature and pH. Primary screening for antimicrobial activity was carried out against several test organisms: Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Klebsiella pneumoniae (ATCC 700603), and Pseudomonas aeruginosa (ATCC 27853) by the perpendicular streaking method, and secondary screening was carried out by the agar well diffusion method using ethyl acetate for solvent extraction. 70.7% of the isolates were identified as Streptomyces spp., 19.5% as Nocardia spp., and 9.5% as Micromonospora spp. 43.34% of actinomycete isolates was found to be potent antimicrobial producers from the primary screening among which 46.34% were effective against Gram-positive and 12.19% against Gram-negative test organisms. Isolate C7 (Micromonospora spp.) showed the best broad-spectrum antimicrobial activity during secondary screening. A total of 11 different types of pigments were observed to be produced by different isolates, of which, the yellow pigment was the most prominent. The association between elevation, pH, and pigment with the antimicrobial production was found to be insignificant. This finding can be of importance for further investigation towards obtaining broad-spectrum antibiotics for therapeutic purpose.


2020 ◽  
Author(s):  
Nusrat Abedin ◽  
Abdullah Hamed A Alshehri ◽  
Ali M A Almughrbi ◽  
Olivia Moore ◽  
Sheikh Alyza ◽  
...  

Antimicrobial resistance (AMR) has become one of the more serious threats to the global health. The emergence of bacteria resistant to antimicrobial substances decreases the potencies of current antibiotics. Consequently, there is an urgent and growing need for the developing of new classes of antibiotics. Three prepared novel iron complexes have a broad-spectrum antimicrobial activity with minimum bactericidal concentration (MBC) values ranging from 3.5 to 10 mM and 3.5 to 40 mM against Gram-positive and Gram-negative bacteria with antimicrobial resistance phenotype, respectively. Time-kill studies and quantification of the extracellular DNA confirmed the bacteriolytic mode of action of the iron-halide compounds. Additionally, the novel complexes showed significant antibiofilm activity against the tested pathogenic bacterial strains at concentrations lower than the MBC. The cytotoxic effect of the complexes on different mammalian cell lines show sub-cytotoxic values at concentrations lower than the minimum bactericidal concentrations.


2016 ◽  
Vol 1 (01) ◽  
Author(s):  
Vemavarapu Bhaskara Rao ◽  
Kandlagunta Guru Prasad ◽  
Krishna Naragani ◽  
Vijayalakshmi Muvva

The air dried rhizosphere soil samples pretreated with calcium carbonate was employed for the isolation of actinomycete strains. Serial dilution plate technique was used for the isolation of actinomycetes. A total of 20 actinomycete strains designated as BS1-BS20 were isolated from the rhizosphere of medicinal plant Clitoria ternatea. All the 20 strains were subjected to primary screening for antimicrobial activity. Among the 20 strains screened, 10 strains exhibited high antimicrobial spectrum against Staphylococcus aureus, Escherichia coli and Candida albicans.


2020 ◽  
Vol 22 (1) ◽  
pp. 105
Author(s):  
Wanting Li ◽  
Zixuan Huang ◽  
Rui Cai ◽  
Wan Yang ◽  
Huawei He ◽  
...  

Silver-based hybrid nanomaterials are receiving increasing attention as potential alternatives for traditional antimicrobial agents. Here, we proposed a simple and eco-friendly strategy to efficiently assemble zinc oxide nanoparticles (ZnO) and silver nanoparticles (AgNPs) on sericin-agarose composite film to impart superior antimicrobial activity. Based on a layer-by-layer self-assembly strategy, AgNPs and ZnO were immobilized on sericin-agarose films using the adhesion property of polydopamine. Scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray powder diffraction spectroscopy were used to show the morphology of AgNPs and ZnO on the surface of the composite film and analyze the composition and structure of AgNPs and ZnO, respectively. Water contact angle, swelling ratio, and mechanical property were determined to characterize the hydrophilicity, water absorption ability, and mechanical properties of the composite films. In addition, the antibacterial activity of the composite film was evaluated against Gram-positive and Gram-negative bacteria. The results showed that the composite film not only has desirable hydrophilicity, high water absorption ability, and favorable mechanical properties but also exhibits excellent antimicrobial activity against both Gram-positive and Gram-negative bacteria. It has shown great potential as a novel antimicrobial biomaterial for wound dressing, artificial skin, and tissue engineering.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Mashooq Ahmad Bhat ◽  
Mohamed A. Al-Omar ◽  
Ahmed M. Naglah ◽  
Abdul Arif Khan

A series of pyrazoles derived from the substituted enaminones were synthesized and were evaluated for antimicrobial activity. All the compounds were characterized by the spectral data and elemental analysis. The synthesized compounds were initially screened for their antimicrobial activity against ATCC 6538, NCTC 10400, NCTC 10418, and ATCC 27853. During initial screening, compounds (P1, P6, and P11) presented significant antimicrobial activity through disc diffusion assay. These compounds were further evaluated for antimicrobial activity at different time points against Gram-positive and Gram-negative bacteria and presented significant activity for 6 hours. The activity was found to be greater against Gram-positive bacteria. In contrast at 24 hours, the activity was found only against Gram-positive bacteria except compound (P11), showing activity against both types of bacteria. Compound (P11) was found to have highest activity against both Gram-positive and Gram-negative bacteria.


2021 ◽  
Vol 19 (9) ◽  
pp. 38-45
Author(s):  
Hussein H. Al-Turnachy ◽  
Fadhilk. alibraheemi ◽  
Ahmed Abd Alreda Madhloom ◽  
Zahraa Yosif Motaweq ◽  
Nibras Yahya Abdulla

The present study was included the assessment of the antimicrobial activity of AgNPs synthesized by Punica granatum peel extract against pathogenic bacteria by testing warm aqueous P. granatum peel extract and silver nanoparticles. Punica granatum indicated potency for AgNP extracellular nanobiosynthesis after addition of silver nitrate (AgNO3) 4mM to the extract supernatant, in both concentrations (100mg and 50mg). The biogenic AgNPs showed potency to inhibit both gram-negative and gram-positive bacterial growth. Zons of inhibition in (mm) was lesser in gram-positive than gram-negative bacteria. The resulted phytogenic AgNPs gave higher biological activity than warm aqueous Punica granatum peel extract. The inhibition zone of the phytogenic AgNPs on E. coli reached 17.53, 22.35, and 26.06 mm at (0.1, 0.5, and 1) mg/ml respectively. While inhibition zones of Punica warm aqueous extract reached 5.33, 10.63, and 16.08 mm at the same concentrations. phytogenic AgNPs gave smaller inhibition zones in gram-positive than gram- negative. Cytotoxic activity of the phytogenic AgNPs was assayed in vitro agaist human blood erythrocytes (RBCs), spectroscopic results showed absorbance at 540 nm hemolysis was observed. In general, AgNPs showed least RBCs hemolysis percentage, at 1 mg/ml concentration, hemolysis percentage was (4.50%). This study, concluded that the Punica granatum peel extract has the power of synthses of AgNPs characterized by broad spectrum antimicrobial activity with cyto-toxicity proportional to AgNPs concentration.


2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Eti Nurwening Sholikhah ◽  
Maulina Diah ◽  
Mustofa ◽  
Masriani ◽  
Susi Iravati ◽  
...  

Pycnarrhena cauliflora (Miers.) Diels., local name sengkubak, is one of indigenous plants from West Kalimantan that has been used as natural flavor. Pycnorrhena cauliflora is one of species of Menispermaceae family which is rich in bisbenzylisoquinoline alkaloids. This alkaloids are known to have various biological activities including antiprotozoal, antiplasmodial, antifungal and antibacterial activities. This study aimed to investigate antimicrobial activity of  the P. cauliflora (Miers.) Diels. methanolic extracts against gram-positive and gram-negative bacteria. The methanolic extract of P. cauliflora (Miers.) Diels., root, leaf and stem were prepared by maceration. The disk-diffusion method was then used to determine the antimicrobial activity of the extracts against Streptococcus pyogenes, S. mutants, Staphylococcus aureus, S. epidermidis, Salmonella typhi, Shigella flexneri, Pseudomonas aeruginosa and Escherichia coli after 18-24 h incubation at 37 oC. Amoxicillin was used as positive control for gram-positive bacteria and ciprofloxacin was used as gram-negative bacteria. The inhibition zones were then measured in mm. Analysis were conducted in duplicates. The results showed in general the methanolic extracts of P. cauliflora (Miers.) Diels. root (inhibition zone diameter= 10-23 mm) were more active than that leaf (0-15 mm) and stem (0-17 mm) extracts against gram-positive bacteria. The zone inhibition diameter of amoxicillin as positive control was 8-42 mm. In addition, the methanolic extracts of P. cauliflora (Miers.) Diels. root (12-17 mm) were also more active than that leaf (0-12 mm) and stem (0-12 mm) extracts against gram-negative bacteria. The zone inhibition diameter of ciprofloxacin as positive control was 33-36 mm. In conclusion, the methanolic extract of P. caulifloria (Miers.) Diels. root is the most extract active against both gram-positive and gram-negative bacteria. Further study will be focused to isolate active compounds in the methanolic extract of the root.


2021 ◽  
Vol 18 ◽  
Author(s):  
Fatma A. Mohamed ◽  
Shaban Elkhabiry ◽  
Ismail A. Ismail ◽  
Attia O. Attia

: The dyes are synthesized by 3-Amino-2-thioxo-4thiazolidinone (N-Amino rhodanine) with glutaraldehyde or Terephthalaldehyde by 2:1 mole to form a and b then coupled with diazonium salts p-Amino benzenesulfonic acid and 4-Amino 3,4 disulfoazobenzeneazobenzene by 2:1 to form new different bis monoazo a1, b1 and diazo a2 and b2 acid dyes. Therefore, the synthesized dyes were applied to both silk and wool fabric materials. We also evaluated the antimicrobial activity for these dyed fabrics against two model gram-negative and gram-positive bacteria. Further, the chemical composition of these dyes is emphasized by elemental analysis Aims: This paper aims to synthesize, apply dye and antimicrobial to four new acid dyes based on derivatives of N-Amino rodanine as a chromophoric group. These dyes are used in dyeing silk and wool with the good lightfastness and are also excellent for washing, rubbing, and sweating fastness. Also, we measure antimicrobial activity for silk and wool fabrics toward Gram-negative, Gram-positive. Background: The search for a synthesis of new acid dyes has antimicrobial for gram-negative and gram-positive. These dyes are mainly used on silk and wool fabrics which have excellent for light fastness, washing, rubbing, and sweating fastness. Objective: The present studies were aimed at synthesis, characterization and antimicrobial toward gram- negative and gram-positive. Methods: The infra-red spectrum was recorded using an Infra-red spectrometer, Perkin Elmer/1650 FT-IR. The 1H-NMR spectra were recorded using a Varian 400MHz spectrometer. The absorbance of the dyes was measured in the ultraviolet-visible region between 300 and 700 nm by a UNICAM UV spectrophotometer. The dye uptake by wool and silk fabrics was measured using a Shimadzu UV-2401PC (UV/V is spectrophotometer at λmax) before and after dyeing. The produced dyes were found to have good antimicrobial activity against a variety of bacteria. Results and Discussion: The compounds a1, b1, a2 &b2 shows good antimicrobial activity toward gram-negative (E. coli), gram-positive (S. aurous). The data showed that exhaustion and the fastness properties of silk and wool dyed fabrics were both very high. Conclusion: This work prepares newly synthesized acid dyes based on 3-Amino-2-thioxo-4thiazolidinone derivatives and uses them for dyeing wool and silk fabrics. Both synthetic dyes have good light fastness and fastness properties. Also, all dyes have a good antimicrobial effect.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Hessa H. Al-Rasheed ◽  
Monirah Al Alshaikh ◽  
Jamal M. Khaled ◽  
Naiyf S. Alharbi ◽  
Ayman El-Faham

Novel series of 4,6-disubstituted-1,3,5-triazines containing hydrazone derivatives were synthesized employing ultrasonic irradiation and conventional heating. The ultrasonication gave the target products in higher yields and purity in shorter reaction time compared with the conventional method. IR, NMR (H 1 and C 13), elemental analysis, and LC-MS confirmed the structures of the new products. The antimicrobial and antifungal activities were evaluated for all the prepared compounds against some selected Gram-positive and Gram-negative bacterial strains. The results showed that only two compounds 7i (pyridine derivative) and 7k (4-chlorobenzaldehyde derivative) displayed biological activity against some Gram-positive and Gram-negative bacteria, while the rest of the tested compounds did not display any antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document