scholarly journals Different Approaches for Developing of Salt Tolerant Sugarcane (Saccharum officinarum)

2021 ◽  
Vol 3 (2) ◽  
pp. 1-5
Author(s):  
Muhammad Ishfaq ◽  
◽  
Fatima tu Zahra ◽  

Sugarcane is a very important crop mostly cultivated in many regions of the world. Sugarcane is an important crop in tropical areas of the world, often being uncovered to environments with high salinity, but little is recognized of genetic variant in salt tolerance. The purpose of this work was once to examine the performance of two genetically various cultivars of sugarcane underneath specific concentrations of salinity (0, 40, eighty and a hundred and sixty mM NaCl) over a period of 30 days. SP 81–3250 was extra salt-tolerant and maintained its charge of biomass production, photosynthesis and leaf place up to one hundred sixty mM NaCl, whereas IAC 87–3396 was a sensitive to 80 mM NaCl. SP 81–3250 maintained very low concentrations of Na+ in both leaves and roots with increasing time and salinity, whereas in IAC 87–3396 the Na+ concentrations had been 2–5 instances higher. This suggests that the tolerance of SP 81–3250 to excessive salinity was due to its ability to leave out Na+ whilst taking up water from the soil, and that measurements of Na+ awareness in leaves should be used to pick out salt-tolerant genotypes for saline areas.

2020 ◽  
Author(s):  
Qian Ma ◽  
Huajian Zhou ◽  
Xinying Sui ◽  
Chunxue Su ◽  
Yanchong Yu ◽  
...  

Abstract Background: Wheat (Triticum aestivum L.) is a staple crop in the world, but is only moderately salt tolerant. However, salt stress affects one-fifth of irrigated agricultural land in the world, it is of great importance to cultivate salt-tolerant varieties to improve the global wheat production. Results: In this study, over 90,000 wheat seeds of cultivar ‘Luyuan502’ were mutated by EMS, and 2000 salt-tolerant lines were harvested from salinized field. By analysis of ethylene sensitivity, salt related physiological factors, and preliminary crop yield, 12 salt-tolerant wheat lines with high production were selected among the crop plants. Transcriptome analysis indicated that a large number of the transcripts levels were significantly altered, mainly based on antenna proteins involved in photosynthesis, biosynthesis of secondary metabolites, cyanoamino acid metabolism, carotenoid biosynthesis, thiamine metabolism, and cutin, suberine and wax biosynthesis pathways including CABs, PERs/PODs, BGLUs, CYP707s, and ZEPs. qRT-PCR analysis revealed that the expressions of salt-related genes in the wheat lines were mostly higher than the wild type, and salt stress can significantly increase the expression levels of the ethylene-related genes in the wheat lines. Based on transcriptomic data, nine novel wheat ERFs were identified and analyzed, and it is suggested that they may play important roles in mediation of ethylene response and salt tolerance.Conclusion: Salt-tolerant wheat mutant lines with ethylene insensitivity were obtained from screen of a wheat EMS-mutagenized pool. Transcriptome data showed that the mutant plants exhibit significant alterations in the antenna proteins involved in various biological processes. Expression analysis suggests that ERFs may mediate ethylene response and salt tolerance of the wheat lines.


2020 ◽  
Vol 44 ◽  
Author(s):  
André Dias de Azevedo Neto ◽  
Katia Núbia Azevedo Barros Mota ◽  
Petterson Costa Conceição Silva ◽  
Alide Mitsue Watanabe Cova ◽  
Rogério Ferreira Ribas ◽  
...  

ABSTRACT Salinity is one of the main limiting factors for crop growth. The metabolic responses to salt stress are variable and depend on species characteristics. This study aimed to select sunflower genotypes tolerant to salt stress and evaluate some mechanisms of salt tolerance in two contrasting (salt-tolerant and salt-sensitive) genotypes. In the first assay, the biomass production and the accumulation of Na+ and K+ in 26 sunflower genotypes were evaluated. Genotypes AG963, AG967, AG972, BRS321, BRS324, H251, H360 and H863 showed lower biomass production and were characterized as salt-sensitive and the genotypes BRS323, Catisol, EXP11-26, EXP44-49, EXP60050, EXP887, HLA860HO and Olisun 5 showed higher biomass production and were considered salt-tolerant. The high K+ content and the low Na+ content in the leaves were the ion traits related to salt tolerance and can be used in sunflower breeding programs for this purpose. In the second assay, the plants of salt-tolerant BRS323 had lower Na+ and Cl- contents and higher levels of K+ than plants of salt-sensitive AG967. A better homeostasis in the mechanisms of transport, distribution and accumulation of inorganic solutes in conjunction with a more efficient osmoregulation mechanism through the synthesis of organic solutes may, at least in part, explain the greater salt-tolerance of BRS323 genotype in comparison to AG967.


2020 ◽  
Vol 21 (13) ◽  
pp. 4586 ◽  
Author(s):  
Yujie Qu ◽  
Quandong Nong ◽  
Shuguang Jian ◽  
Hongfang Lu ◽  
Mingyong Zhang ◽  
...  

Pitaya (Hylocereus undatus) is a high salt-tolerant fruit, and ethylene response factors (ERFs) play important roles in transcription-regulating abiotic tolerance. To clarify the function of HuERF1 in the salt tolerance of pitaya, HuERF1 was heterogeneously expressed in Arabidopsis. HuERF1 had nuclear localization when HuERF1::GFP was expressed in Arabidopsis protoplasts and had transactivation activity when HuERF1 was expressed in yeast. The expression of HuERF1 in pitaya seedlings was significantly induced after exposure to ethylene and high salinity. Overexpression of HuERF1 in Arabidopsis conferred enhanced tolerance to salt stress, reduced the accumulation of superoxide (O2 · ¯ ) and hydrogen peroxide (H2O2), and improved antioxidant enzyme activities. These results indicate that HuERF1 is involved in ethylene-mediated salt stress tolerance, which may contribute to the salt tolerance of pitaya.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1149d-1149
Author(s):  
Mahdi S. Abdal ◽  
Jagan N. Sharma

Eggplant is an important vegetable crop in Kuwait. Eggplant is considered to have moderately sensitive salt-tolerance, though no quantitative information is available on its salt sensitivity. Selecting salt-tolerant genotypes in eggplant is an ongoing project at Kuwait Institute for Scientific Research. Towards the goal of selecting salt-tolerant genotypes in eggplant a completely randomized experiment using 10 cultivars, replicated 3 times were tested against 2 levels of high salinity stress (EC MS.cm-1 at 25°C, 15.0 and 18.0) along with the control (EC MS.cm-1 at 25°C, 3.0). The experiment was conducted on 15 days old seedlings inside a greenhouse. Data on shoot length and visual observations on leaf necrosis, leaf collapse and root color was also recorded. There was a clear degree of variability as well as significant differences in growth and final survival, between cultivars at 2 levels of salinity stress. Those genotypes that showed significant higher growth rates and survival without any signs on leaf necrosis and root collapse formed the basis salt-tolerant genotypes.


2020 ◽  
Author(s):  
Pan Hu ◽  
Qi Zheng ◽  
Qiaoling Luo ◽  
Wan Teng ◽  
Hongwei Li ◽  
...  

Abstract Background Soil salinization is a major threat to wheat production. It is essential to understand the genetic basis of salt tolerance for breeding and selecting new salt-tolerant cultivars that have the potential to increase wheat yield. Result In this study, a panel of 191 wheat accessions was subjected to genome wide association study (GWAS) to identify SNP markers linked with adult-stage characters. The population was genotyped by Wheat660K SNP array and eight phenotype traits were investigated under low and high salinity environments for three consecutive years. A total of 389 SNPs representing 11 QTL were significantly associated with traits under different salt treatments, with the phenotypic explanation rate (R2) ranging from 9.14–50.45%. Of these, repetitive and pleiotropic loci on chromosomes 4A, 5A, 5B and 7A were significantly linked to yield and yield related traits under low salinity conditions. Spike length-related loci were mainly located on chromosomes 1B, 3B, 5B and 7A under different salt treatments. Two loci on chromosome 4D and 5A were related with plant height in low and high salinity environment, respectively. Three salt-tolerant related loci were confirmed to be important in two bi-parental populations. Distribution of favorable haplotypes indicated that superior haplotypes of pleiotropic loci on group-5 chromosomes were strongly selected and had potential for increasing wheat salt tolerance. A total of 14 KASP markers were developed for nine loci associating with yield and related traits to improve the selection efficiency of wheat salt-tolerance breeding. Conclusion Utilizing a Wheat660K SNPs chip, QTL for yield and its related traits were detected under salt treatment in a natural wheat population. Important salt-tolerant related loci were validated in RIL and DH populations. This study provided reliable molecular markers that could be crucial for marker-assisted selection in wheat salt tolerance breeding programs.


2021 ◽  
Author(s):  
Julissa Rojas-Sandoval ◽  
Pedro Acevedo-Rodríguez

Abstract C. equisetifolia is a nitrogen-fixing tree of considerable social, economic and environmental importance in many tropical areas of the world. It is widely planted for reclamation of unstable coastal ecosystems in the tropics and subtropics. It is salt-tolerant and can grow on sands so is especially useful for erosion control and windbreaks along coastlines and estuaries. The wood has many uses but is renowned as a fuel. It is a truly multipurpose species, providing a range of products and services for industrial and local end-users.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pan Hu ◽  
Qi Zheng ◽  
Qiaoling Luo ◽  
Wan Teng ◽  
Hongwei Li ◽  
...  

Abstract Background Soil salinization is a major threat to wheat production. It is essential to understand the genetic basis of salt tolerance for breeding and selecting new salt-tolerant cultivars that have the potential to increase wheat yield. Result In this study, a panel of 191 wheat accessions was subjected to genome wide association study (GWAS) to identify SNP markers linked with adult-stage characters. The population was genotyped by Wheat660K SNP array and eight phenotype traits were investigated under low and high salinity environments for three consecutive years. A total of 389 SNPs representing 11 QTLs were significantly associated with plant height, spike number, spike length, grain number, thousand kernels weight, yield and biological mass under different salt treatments, with the phenotypic explanation rate (R2) ranging from 9.14 to 50.45%. Of these, repetitive and pleiotropic loci on chromosomes 4A, 5A, 5B and 7A were significantly linked to yield and yield related traits such as thousand kernels weight, spike number, spike length, grain number and so on under low salinity conditions. Spike length-related loci were mainly located on chromosomes 1B, 3B, 5B and 7A under different salt treatments. Two loci on chromosome 4D and 5A were related with plant height in low and high salinity environment, respectively. Three salt-tolerant related loci were confirmed to be important in two bi-parental populations. Distribution of favorable haplotypes indicated that superior haplotypes of pleiotropic loci on group-5 chromosomes were strongly selected and had potential for increasing wheat salt tolerance. A total of 14 KASP markers were developed for nine loci associating with yield and related traits to improve the selection efficiency of wheat salt-tolerance breeding. Conclusion Utilizing a Wheat660K SNPs chip, QTLs for yield and its related traits were detected under salt treatment in a natural wheat population. Important salt-tolerant related loci were validated in RIL and DH populations. This study provided reliable molecular markers that could be crucial for marker-assisted selection in wheat salt tolerance breeding programs.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
N. Pandeeswari ◽  
K. Sivakumar

Salinity seriously constrains crop yield in irrigated agriculture throughout the world. Also, salinity is a serious threat to agriculture in arid and semi arid regions. Nearly 10 % of the world’s land surface can be classified as endangered by salinity. Salinity in the soil and irrigation water is an environmental problem and a major constraint for crop production. Currently, 20 % of the world’s cultivated land is affected by salinity, which results in the loss of 50 % of agricultural yield. At present, there are nearly 954 million hectares of saline soils on the earth’s surface. All these salt affected soils are distributed throughout the world. The salinity response of legumes in general varies greatly depending on factors like climatic conditions, soil properties, salt tolerance and the stages of crop growth. Successful cultivation of legumes can be achieved by the selection and/or development of a salt-tolerant legume Rhizobium combination although high salinities are known to affect rhizobial activities. The aim of present study is the effect of strains of salt tolerant Rhizobia on IAA, EPS, nodule ARA activity, Nitrogen content, leghemoglobin content, siderophore production, IAR and salt concentration of Groundnut on coastal area of Cuddalore District of Tamil Nadu. The GNR CD-4 is the effect salt tolerance strain compared to other strains.


2021 ◽  
Vol 1 (1) ◽  
pp. 13-17
Author(s):  

Rice is a most staple and demandable food crop of the world which feeds more than half of the world’s overall population. Soil salinity has become a serious problem of the world nowadays which is a common threat to all agricultural crops specially rice because rice is categorized as a typical glycophyte. Salinity is one of the major constraints especially in the coastal areas of the world. This salinity problem can be overcome by conventional and modern breeding technologies. We have focused on the breeding techniques to be adopted to cope with this issue. Salt tolerant varieties can be produced by screening already existing varieties, marker-assisted selection or genetic engineering by introducing salt-tolerance genes. In this review, we have focused salinity problems at global level and its impact on rice as well as other crops plants.


2013 ◽  
Vol 19 (2) ◽  
pp. 57-65
Author(s):  
MH Kabir ◽  
MM Islam ◽  
SN Begum ◽  
AC Manidas

A cross was made between high yielding salt susceptible BINA variety (Binadhan-5) with salt tolerant rice landrace (Harkuch) to identify salt tolerant rice lines. Thirty six F3 rice lines of Binadhan-5 x Harkuch were tested for salinity tolerance at the seedling stage in hydroponic system using nutrient solution. In F3 population, six lines were found as salt tolerant and 10 lines were moderately tolerant based on phenotypic screening at the seedling stage. Twelve SSR markers were used for parental survey and among them three polymorphic SSR markers viz., OSR34, RM443 and RM169 were selected to evaluate 26 F3 rice lines for salt tolerance. With respect to marker OSR34, 15 lines were identified as salt tolerant, 9 lines were susceptible and 2 lines were heterozygous. While RM443 identified 3 tolerant, 14 susceptible and 9 heterozygous rice lines. Eight tolerant, 11 susceptible and 7 heterozygous lines were identified with the marker RM169. Thus the tested markers could be efficiently used for tagging salt tolerant genes in marker-assisted breeding programme.DOI: http://dx.doi.org/10.3329/pa.v19i2.16929 Progress. Agric. 19(2): 57 - 65, 2008


Sign in / Sign up

Export Citation Format

Share Document