scholarly journals Impact of processing temperature on drying behavior and quality changes in organic beef

Author(s):  
Gardis J.E. Von Gersdorff ◽  
Luna Shrestha ◽  
Sharvari Raut ◽  
Stefanie K. Retz ◽  
Oliver Hensel ◽  
...  

The drying of beef has gained an increasing interest and the organic market shows an increasing demand for dried beef products. In this study, organic beef meat slices were dried at 50 °C, 60 °C and 70 °C. Moisture content and color was measured throughout the drying process alongside Vis/VNIR hyperspectral images of the slices. The results of the total color difference (ΔE) showed the biggest change for samples dried at 50 °C (ΔE = 25.6). The aw value was the lowest for slices dried at 50 °C (0.744). The hyperspectral data gave promising results regarding non-invasive prediction of moisture content and color. Keywords: beef drying; drying behavior;color; hyperspectral imaging; quality.  

2019 ◽  
Vol 797 ◽  
pp. 196-201
Author(s):  
Habsah Alwi ◽  
Nurul Shazana Mohd Zain ◽  
Hanafiah Zainal Abidin ◽  
Jefri Jaafar ◽  
Ku Halim Ku Hamid

Drying also known as dehydration is commonly used as a unit operation in herbs manufacturing industry to preserve the food product by removing the moisture content in the herbs. Unfortunately, most drying process degraded the product quality because the feedstock is exposed to a very high temperature within a long period of time by using conventional oven Therefore this research has focused on the alternatives technique in overcoming the degradation of nutrients by applying the irradiation concepts. The objectives of this research were to investigate the effect of drying onto the physical properties of Aquilaria Malaccensis leaves by using fabricated far-infrared dryer. The experiments were conducted at various temperature ranging from 40, 50 and 60°C. The color difference and the moisture content of the leaves before and after drying were examined. The color measurements data shows that at 60°C, the brightness and the chroma were the highest. On the other hand, the hue angles were the highest for 60°C when the time was reached 100 minutes.


2020 ◽  
Vol 9 (3) ◽  
pp. 924-932
Author(s):  
Agustami Sitorus ◽  
Novrinaldi Novrinaldi ◽  
Ramayanty Bulan

Moisture content in the process of drying is often unknown when carrying out the drying process, especially the fluidized dryer. A lot of experimental designs are needed when observing the drying phenomenon more deeply.  It is because to stop and repeat drying process from the beginning again when the sample is taken to test its moisture content needed more experiments. Therefore, this paper presents development of a non-intrusive moisture measurement system prepared for fluidization type dryers. The method used in to conduct this research consists of (i) structural design analysis and (ii) functional (mechanical and electrical systems) and (iii) simple testing of the water content measurement system of constructed material. Test parameters observed include errors in measuring and fluctuating sensor signals against vibration applied to the weighing system. The results showed that non-intrusive moisture content measurement system for fluidized dryers based on the ESP8266 microcontroller had been successfully developed and worked normally. The measurement system has been calibrated with a coefficient of determination (R2) close to one. Measurement error resulting from the effect of vibration on this system shows a very satisfactory value of 6.89%.


Energetika ◽  
2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Lina Vorotinskienė

The most efficient way so far to extract energy from renewable sources is combustion of solid fuel. Solid fuel furnaces of moderate capacity (5–10 MW) equipped with reciprocating grates are most popular. Grate combustion is a well-developed technology; however, to burn biofuel in this type of furnaces in the optimal and safe way, the fuel must be of high quality and have at least constant moisture content. However, increasing demand for biofuel results in increasing prices. To remain in the market and to stay competitive, heat producers choose to utilise moist biofuel of lower quality, whose moisture content can vary and reach up to 60% wt. The burning on the grate of such biofuel is complicated as the drying process occupies most of the space in the furnace. The purpose of this work was to analyse processes taking place in a furnace, such as: primary air supply, influence of flue gas recirculation and radiation from hot surfaces of the furnace to biofuel drying. Analysis of the data obtained would provide technical decisions facilitating optimal fuel combustion in a furnace without additional investments. Analysis of biofuel drying was performed in an experimental setup with a fixed fuel bed. The experiments were performed with wood chips and four different drying fluid temperatures. The results of experimental studies have shown that the drying rate of biofuels upper layers is strongly influenced by radiation from hot surfaces and the moisture content of the sample decreases by 18% wt.


2020 ◽  
Vol 328 ◽  
pp. 04004
Author(s):  
Ladislav Dzurenda

The paper presents a mode for drying steaming maple timber of thickness h = 38 mm from moisture W1 = 50 % to W2 = 10 %, while preserving the color of wood obtained by the steaming process. The drying process is divided into two parts. Evaporation of free water from wet wood at drying medium temperatures td = 35 - 40 °C and evaporation of water from wood below the hygroscopicity limit W ≤ 25 % at drying medium temperatures td = 70 - 80 °C. Total color difference ΔE* determined by the difference in values on the CIE L*a*b* color space coordinates dried by the proposed mode for steaming maple timber and the reference values ΔE* = 1.03. According to the categorization of wood color changes in thermal processes by work (Cividini et al. (2007), this change belongs to the category of small color changes. A negative aspect of this drying mode is the approx. 25 % increase in timber drying time.


2020 ◽  
Vol 16 (7) ◽  
Author(s):  
Regilane Marques Feitosa ◽  
Rossana Maria Feitosa de Figueirêdo ◽  
Alexandre José de Melo Queiroz ◽  
Wilton Pereira da Silva ◽  
Inacia dos Santos Moreira

AbstractMyrtle (Eugenia gracílima Kiaersk) is a fruit that has significant amounts of anthocyanins and its sensory characteristics give it commercial value and its short shelf life justifies studies on conservation processes. The aim of this study was to assess the dehydration of myrtle pulp in spray dryer using maltodextrin as promoter, evaluating the effect of drying temperatures of 150, 170, and 190 °C on the powder obtained. Increasing the drying temperature provided lower moisture content, water activity and anthocyanin values and total color difference. Acidity and insolubility of powders were better for lower drying temperatures. In general, there were changes in the shape of powder particles by increasing the drying temperature and different collection locations on the spray dryer. The model that best fit experimental data of adsorption isotherms at 25 °C was Peleg. Isotherms were classified as type III.


2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1590 ◽  
Author(s):  
Angelo Del Giudice ◽  
Andrea Acampora ◽  
Enrico Santangelo ◽  
Luigi Pari ◽  
Simone Bergonzoli ◽  
...  

Drying is a critical point for the exploitation of biomass for energy production. High moisture content negatively affects the efficiency of power generation in combustion and gasification systems. Different types of dryers are available however; it is known that rotary dryers have low cost of maintenance and consume 15% and 30% less in terms of specific energy. The study analyzed the drying process of woody residues using a new prototype of mobile rotary dryer cocurrent flow. Woodchip of poplar (Populus spp.), black locust (Robinia pseudoacacia L.), and grapevine (Vitis vinifera L.) pruning were dried in a rotary drier. The drying cycle lasted 8 h for poplar, 6 h for black locust, and 6 h for pruning of grapevine. The initial biomass had a moisture content of around 50% for the poplar and around 30% for grapevine and black locust. The study showed that some characteristics of the biomass (e.g., initial moisture content, particle size distribution, bulk density) influence the technical parameters (i.e., airflow temperature, rate, and speed) of the drying process and, hence, the energy demand. At the end of the drying process, 17% of water was removed for poplar wood chips and 31% for grapevine and black locust wood chips. To achieve this, result the three-biomass required 1.61 (poplar), 0.86 (grapevine), and 1.12 MJ kgdry solids−1 (black locust), with an efficiency of thermal drying (η) respectively of 37%, 12%, and 27%. In the future, the results obtained suggest an increase in the efficiency of the thermal insulation of the mobile dryer, and the application of the mobile dryer in a small farm, for the recovery of exhaust gases from thermal power plants.


Horticulturae ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 40
Author(s):  
Vincenzo Alfeo ◽  
Diego Planeta ◽  
Salvatore Velotto ◽  
Rosa Palmeri ◽  
Aldo Todaro

Solar drying and convective oven drying of cherry tomatoes (Solanum lycopersicum) were compared. The changes in the chemical parameters of tomatoes and principal drying parameters were recorded during the drying process. Drying curves were fitted to several mathematical models, and the effects of air temperature during drying were evaluated by multiple regression analyses, comparing to previously reported models. Models for drying conditions indicated a final water content of 30% (semidry products) and 15% (dry products) was achieved, comparing sun-drying and convective oven drying at three different temperatures. After 26–28 h of sun drying, the tomato tissue had reached a moisture content of 15%. However, less drying time, about 10–11 h, was needed when starting with an initial moisture content of 92%. The tomato tissue had high ORAC and polyphenol content values after convective oven drying at 60 °C. The dried tomato samples had a satisfactory taste, color and antioxidant values.


Foods ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 284
Author(s):  
Ebrahim Taghinezhad ◽  
Mohammad Kaveh ◽  
Antoni Szumny

Drying can prolong the shelf life of a product by reducing microbial activities while facilitating its transportation and storage by decreasing the product weight and volume. The quality factors of the drying process are among the important issues in the drying of food and agricultural products. In this study, the effects of several independent variables such as the temperature of the drying air (50, 60, and 70 °C) and the thickness of the samples (2, 4, and 6 mm) were studied on the response variables including the quality indices (color difference and shrinkage) and drying factors (drying time, effective moisture diffusivity coefficient, specific energy consumption (SEC), energy efficiency and dryer efficiency) of the turnip slices dried by a hybrid convective-infrared (HCIR) dryer. Before drying, the samples were treated by three pretreatments: microwave (360 W for 2.5 min), ultrasonic (at 30 °C for 10 min) and blanching (at 90 °C for 2 min). The statistical analyses of the data and optimization of the drying process were achieved by the response surface method (RSM) and the response variables were predicted by the adaptive neuro-fuzzy inference system (ANFIS) model. The results indicated that an increase in the dryer temperature and a decline in the thickness of the sample can enhance the evaporation rate of the samples which will decrease the drying time (40–20 min), SEC (from 168.98 to 21.57 MJ/kg), color difference (from 50.59 to 15.38) and shrinkage (from 67.84% to 24.28%) while increasing the effective moisture diffusivity coefficient (from 1.007 × 10−9 to 8.11 × 10−9 m2/s), energy efficiency (from 0.89% to 15.23%) and dryer efficiency (from 2.11% to 21.2%). Compared to ultrasonic and blanching, microwave pretreatment increased the energy and drying efficiency; while the variations in the color and shrinkage were the lowest in the ultrasonic pretreatment. The optimal condition involved the temperature of 70 °C and sample thickness of 2 mm with the desirability above 0.89. The ANFIS model also managed to predict the response variables with R2 > 0.96.


Sign in / Sign up

Export Citation Format

Share Document