Far-Infrared Drying Effects onto the Physical Characteristics of Aquilaria malaccensis Leaves

2019 ◽  
Vol 797 ◽  
pp. 196-201
Author(s):  
Habsah Alwi ◽  
Nurul Shazana Mohd Zain ◽  
Hanafiah Zainal Abidin ◽  
Jefri Jaafar ◽  
Ku Halim Ku Hamid

Drying also known as dehydration is commonly used as a unit operation in herbs manufacturing industry to preserve the food product by removing the moisture content in the herbs. Unfortunately, most drying process degraded the product quality because the feedstock is exposed to a very high temperature within a long period of time by using conventional oven Therefore this research has focused on the alternatives technique in overcoming the degradation of nutrients by applying the irradiation concepts. The objectives of this research were to investigate the effect of drying onto the physical properties of Aquilaria Malaccensis leaves by using fabricated far-infrared dryer. The experiments were conducted at various temperature ranging from 40, 50 and 60°C. The color difference and the moisture content of the leaves before and after drying were examined. The color measurements data shows that at 60°C, the brightness and the chroma were the highest. On the other hand, the hue angles were the highest for 60°C when the time was reached 100 minutes.

Author(s):  
Gardis J.E. Von Gersdorff ◽  
Luna Shrestha ◽  
Sharvari Raut ◽  
Stefanie K. Retz ◽  
Oliver Hensel ◽  
...  

The drying of beef has gained an increasing interest and the organic market shows an increasing demand for dried beef products. In this study, organic beef meat slices were dried at 50 °C, 60 °C and 70 °C. Moisture content and color was measured throughout the drying process alongside Vis/VNIR hyperspectral images of the slices. The results of the total color difference (ΔE) showed the biggest change for samples dried at 50 °C (ΔE = 25.6). The aw value was the lowest for slices dried at 50 °C (0.744). The hyperspectral data gave promising results regarding non-invasive prediction of moisture content and color. Keywords: beef drying; drying behavior;color; hyperspectral imaging; quality.  


2019 ◽  
Vol 1 (1) ◽  
pp. 19-22
Author(s):  
Yus Witdarko

Drying method that is applied in flour manufacturing industry, one of which is pneumatic drying. Variable types of both the properties of the dried material and the conditions of the drying process greatly affect the quality of the results of drying. Water content is an important variable in determining the quality of flour. The purpose of this study was to find the effect of drying air temperature on the moisture content of cassava flour under the conditions of the pneumatic drying process. Drying of cassava flour at desiccant air temperatures of 145oC and 160oC with 2 drying cycles produced a moisture content of 11.3 and 8.7% wb and had fulfilled SNI for flour water content, which was a maximum of 12% wb. The higher the temperature of the drying air, the lower the moisture content.


Cellulose based insulation in the form of different papers and pressboard play a vital role in transformer manufacturing as very high level of voltages are encountered during transformer operation. Cellulose being hygroscopic in nature contains 8-10% moisture by weight. The life of a transformer is critically dependant on the state of cellulose insulation so much so that, paper with 1.5% moisture content ages 10 times faster than with only 0.3% moisture. For obvious reasons, it is very important that the moisture is removed from transformer insulation. As of today, the latest technology available for this moisture extraction is the vapour phase drying process. This paper evaluates the influence of temperatures at various locations on the drying time of two 220kv transformer insulations in vapour phase drying process.


Transformers are required to handle very high levels of voltage and hence proper insulation is very important in transformers. As of now, the most preferred form of insulation in transformers is cellulose based. The state of cellulose insulation materials like paper & pressboards determines the life end of a transformer. Paper with 1.5% moisture content ages 10 times faster than with only 0.3% moisture. For obvious reasons, it is very important that the moisture is removed from transformer insulation. Vacuum drying has been conventionally used in industries for insulation drying but, as of today the latest technology available is the vapour phase drying process. This paper evaluates the influence of temperatures at various locations on the drying time of the 132kv transformer insulations in vapour phase drying process.


2013 ◽  
Vol 8 (2) ◽  
pp. 107-117 ◽  
Author(s):  
Hosain Darvishi ◽  
Gholamhassan Najafi ◽  
Adel Hosainpour ◽  
Jala Khodaei ◽  
Mohsen Aazdbakht

Abstract In this study, infrared drying characteristic of mushroom slices was investigated in the temperature range of 50–90°C. The drying data were fitted to five thin-layer drying models. The performance of these models was compared using the determination of coefficient (R2), reduced chi-square (χ2), and root mean square error between the observed and predicted moisture ratios. The values of the diffusivity coefficients at each temperature were obtained using Fick’s second law of diffusion. The drying processes were completed within 60–168 min at different temperatures. Experimental drying curves showed only a falling drying rate period. The results show that the logarithmic model is the most appropriate model for infrared drying behavior of thin-layer mushroom slices. A third-order polynomial relationship was found to correlate the effective moisture diffusivity with moisture content. The average effective moisture diffusivity increased with increasing temperature and decrease in moisture content of mushroom slices and varied from 8.039 × 10−10 to 20.618 × 10−10 m2/s. Arrhenius relation with an activation energy value of 21.85 kJ/mol expressed the effect of temperature on the average diffusivity. The minimum and the maximum energy requirements for drying of mushroom slices were also determined as 2.87 kW h/kg water and 5.36 kW h/kg water for 90 and 50°C, respectively.


2015 ◽  
Vol 723 ◽  
pp. 711-714
Author(s):  
Chun Shan Liu ◽  
Si Yu Chen ◽  
Wen Fu Wu ◽  
Jun Fa Wang ◽  
Hai Bo Zhou

To understand the drying characteristics of corn in infrared drying process, the research of corn post-harvest drying experiment was developed on self-developed infrared grain dryer. Analysing the influence of hot air temperature by blast capacity and the outlet size of air distribution under the full load condition, the change rules of the corn moisture content, the temperature change and the energy consumption characteristics during the drying process have been researched.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Aye T Ajiboye ◽  
Abdulrahman O Yusuf ◽  
Michael M Odewole

To achieve optimal dryer performance, the process parameters required for both the optimization and control of the drying process must be made available via the instrumentation system. A few works have been reported on the development of instrumentation systems for handling drying system parameters. Out of which, some are deficient in the number of drying process parameters that can be handled, while others are unreliable and inaccurate. Therefore, there is the need to develop a microcontroller-based instrumentation system that can monitor, measure, control, display and store the main drying process parameters and sample weight with a high degree of reliability and accuracy. In this study, the sensors were selected based on system specifications and interfaced with the microcontroller. The codes for controlling, logging and displaying of drying parameters were developed and installed on the microcontroller. When tested at steady-state conditions, the system yielded satisfactory results with maximum control and detection errors being 2.0% and 1.8% for the temperature and sample weight, respectively. The developed system can be used for efficient computation of both the dry and wet basis sample moisture content values and also detect the set sample weight. Keywords— Dryer, Drying parameters, Instrumentation system, Moisture content, Sensor.


Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


2012 ◽  
Vol 2 (1) ◽  
pp. 14-20
Author(s):  
Yuwana Yuwana

Experiment on catfish drying employing ‘Teko Bersayap’ solar dryer was conducted. The result of the experiment indicated that the dryer was able to increase ambient temperature up to 44% and decrease ambient relative humidity up to 103%. Fish drying process followed equations : KAu = 74,94 e-0,03t for unsplitted fish and KAb = 79,25 e-0,09t for splitted fish, where KAu = moisture content of unsplitted fish (%), KAb = moisture content of splitted fish (%), t = drying time. Drying of unsplitted fish finished in 43.995 hours while drying of split fish completed in 15.29 hours. Splitting the fish increased 2,877 times drying rate.


2019 ◽  
pp. 28-34
Author(s):  
Margarita Castillo-Téllez ◽  
Beatriz Castillo-Téllez ◽  
Juan Carlos Ovando-Sierra ◽  
Luz María Hernández-Cruz

For millennia, humans have used hundreds of medicinal plants to treat diseases. Currently, many species with important characteristics are known to alleviate a wide range of health problems, mainly in rural areas, where the use of these resources is very high, even replacing scientific medicine almost completely. This paper presents the dehydration of medicinal plants that are grown in the State of Campeche through direct and indirect solar technologies in order to evaluate the influence of air flow and temperature on the color of the final product through the L* a* scale. b*, analyzing the activity of water and humidity during the drying process. The experimental results showed that the direct solar dryer with forced convection presents a little significant color change in a drying time of 400 min on average, guaranteeing the null bacterial proliferation and reaching a final humidity between 9 % and 11 %.


Sign in / Sign up

Export Citation Format

Share Document