Factors Influencing the Rate-of-Pickling Test on Tin-Plate Steel★

CORROSION ◽  
1959 ◽  
Vol 15 (3) ◽  
pp. 51-56 ◽  
Author(s):  
R. M. HUDSON ◽  
G. L. STRAGAND

Abstract “Lag time” is a measure of the time of pickling necessary to produce a constant rate of weight loss from steel immersed in acid. This measurement has been used as a guide for improving the corrosion resistance of commercial electrolytic tin plate. It is determined by measuring either the rate of change of weight loss, hydrogen evolution, or corroding potential of a specimen in 6N hydrochloric acid at 90 C (194 F.) The lag time depends on surface effects inasmuch as removing the surface layers of steel by abrasion or by pickling destroys the lag. The influence of box-annealing atmospheres, cleanliness of steel, and time-temperature cycles on lag time have been investigated, and the complexity of these effects has been demonstrated. Explanations in terms of oxidation or decarburization of the steel surface during annealing are not feasible for the development of lag time under all the experimental conditions studied. Preliminary data demonstrating the high concentrations of certain elements on the steel surface before annealing, and the enrichment of the surface layer by some of these elements during annealing, are suggested as particularly promising areas for future work. In this way lag time phenomena in tin-plate steels may be better understood and further improvement in tin-plate corrosion resistance can be made. 2.3.4

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 552
Author(s):  
Changyao Ouyang ◽  
Qiaofeng Bai ◽  
Xianguo Yan ◽  
Zhi Chen ◽  
Binhui Han ◽  
...  

In this paper, the corrosion performance of a laser cladding Fe-based alloy coating on the surface of 27SiMn steel was studied. The Fe-based alloy coating was prepared on a 27SiMn steel surface by high-speed laser cladding. The microstructure, morphological characteristics, element content, and phase composition of the cladding layer were analyzed by an optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), and X-ray diffractometer (XRD), respectively. The corrosion resistance of the 27SiMn substrate and Fe-based coating in different corrosive environments was tested through an electrochemical experimental station, a salt spray corrosion test box, and an immersion experiment. The Fe-based alloy cladding layer is mainly composed of a-Fe, M7C3, M2B, and Cr3Si. The cladding layer structure forms planar, cellular, dendrite, and equiaxed dendrite during rapid solidification. The corrosion potential of the cladding layer is higher than that of the substrate, and the arc radius of the cladding layer is larger than that of the substrate. After salt spray corrosion, a large number of red and black corrosion products appeared on the surface of the substrate; the surface of the cladding layer sample was still smooth, and the morphology was almost unchanged. The weight loss results of the cladding layer and 27SiMn matrix after 120 h of immersion are 0.0688 and 0.0993 g·cm−2, respectively. The weight loss of the cladding layer is 30.7% less than that of the matrix. Conclusion: Laser cladding an Fe-based alloy coating on the surface of 27SiMn has better corrosion resistance than the substrate, which improves the corrosion resistance of hydraulic supports.


2021 ◽  
Vol 340 ◽  
pp. 01022
Author(s):  
Evdokiya Bushueva ◽  
Yevgeny Turlo ◽  
Galina Khamgushkeeva

Phase transformations occurring during the non-vacuum electron-beam surfacing using a mixture of amorphous boron and chromium powder (from 5 to 30 wt%) as well as the effect of the resulting structure on the corrosion resistance of the surface layers of chromium-nickel austenitic steel have been investigated. It has been found that when processing a powder mixture with a minimum chromium content (5 and 10 wt%), layers with a dense arrangement of borides are formed. Further increase in chromium concentration (20 and 30 wt%) leads to the formation of solid solutions in the modified layer. It has been shown that an increase in the concentration of chromium in the surface layer leads to a twofold increase in the corrosion resistance of the 12Х18Н9T (AISI 302) steel surface.


2015 ◽  
Vol 72 (12) ◽  
pp. 2270-2276 ◽  
Author(s):  
Yu Gu ◽  
Li-Ming Yang ◽  
Jie Chen ◽  
Ling-Ling Wang ◽  
Bin Chen

Corrosion on steel and copper pipes in industry can trigger pollution and weakness due to undesired chemical and biochemical reactions. Too much or too little inhibitor can decrease its efficiency, even causing waste and pollution. In this contribution, an innovative delivery device driven by hydrogel swelling, mainly consisting of a semi-permeable membrane, a hydrogel-swelling force drive and a release orifice, was developed to control the release of inhibitor in a water system at a constant rate, leading the amount of inhibitor to maintain a proper concentration. The effects of hydrogel mass and orifice dimension on release property were studied for controlling release rate. Moreover, a weight loss experiment on carbon steels was carried out to show the incredible anti-corrosion function of the system.


2018 ◽  
Vol 24 (3) ◽  
pp. 341-358 ◽  
Author(s):  
Xiaotong Ji ◽  
Yingying Zhang ◽  
Guangke Li ◽  
Nan Sang

Recently, numerous studies have found that particulate matter (PM) exposure is correlated with increased hospitalization and mortality from heart failure (HF). In addition to problems with circulation, HF patients often display high expression of cytokines in the failing heart. Thus, as a recurring heart problem, HF is thought to be a disorder characterized in part by the inflammatory response. In this review, we intend to discuss the relationship between PM exposure and HF that is based on inflammatory mechanism and to provide a comprehensive, updated evaluation of the related studies. Epidemiological studies on PM-induced heart diseases are focused on high concentrations of PM, high pollutant load exposure in winter, or susceptible groups with heart diseases, etc. Furthermore, it appears that the relationship between fine or ultrafine PM and HF is stronger than that between HF and coarse PM. However, fewer studies paid attention to PM components. As for experimental studies, it is worth noting that coarse PM may indirectly promote the inflammatory response in the heart through systematic circulation of cytokines produced primarily in the lungs, while ultrafine PM and its components can enter circulation and further induce inflammation directly in the heart. In terms of PM exposure and enhanced inflammation during the pathogenesis of HF, this article reviews the following mechanisms: hemodynamics, oxidative stress, Toll-like receptors (TLRs) and epigenetic regulation. However, many problems are still unsolved, and future work will be needed to clarify the complex biologic mechanisms and to identify the specific components of PM responsible for adverse effects on heart health.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1757
Author(s):  
Yesica Vicente-Martínez ◽  
Manuel Caravaca ◽  
Antonio Soto-Meca ◽  
Miguel Ángel Martín-Pereira ◽  
María del Carmen García-Onsurbe

This paper presents a novel procedure for the treatment of contaminated water with high concentrations of nitrates, which are considered as one of the main causes of the eutrophication phenomena. For this purpose, magnetic nanoparticles functionalized with silver (Fe3O4@AgNPs) were synthesized and used as an adsorbent of nitrates. Experimental conditions, including the pH, adsorbent and adsorbate dose, temperature and contact time, were analyzed to obtain the highest adsorption efficiency for different concentration of nitrates in water. A maximum removal efficiency of 100% was reached for 2, 5, 10 and 50 mg/L of nitrate at pH = 5, room temperature, and 50, 100, 250 and 500 µL of Fe3O4@AgNPs, respectively. The characterization of the adsorbent, before and after adsorption, was performed by energy dispersive X-ray spectroscopy, scanning electron microscopy, Brunauer-Emmett-Teller analysis and Fourier-transform infrared spectroscopy. Nitrates can be desorbed, and the adsorbent can be reused using 500 µL of NaOH solution 0.01 M, remaining unchanged for the first three cycles, and exhibiting 90% adsorption efficiency after three regenerations. A deep study on equilibrium isotherms reveals a pH-dependent behavior, characterized by Langmuir and Freundlich models at pH = 5 and pH = 1, respectively. Thermodynamic studies were consistent with physicochemical adsorption for all experiments but showed a change from endothermic to exothermic behavior as the temperature increases. Interference studies of other ions commonly present in water were carried out, enabling this procedure as very selective for nitrate ions. In addition, the method was applied to real samples of seawater, showing its ability to eliminate the total nitrate content in eutrophized waters.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 543
Author(s):  
Ketan Kumar Sandhi ◽  
Jerzy Szpunar

Nickel superalloy Hastelloy-N, alloy X-750, stainless steel 316 (SS316), and stainless steel 304 (SS304) are among the alloys used in the construction of molten salt reactor (MSR). These alloys were analyzed for their corrosion resistance behavior in molten fluoride salt, a coolant used in MSR reactors with 46.5% LiF+ 11.5% NaF+ 42% KF. The corrosion tests were run at 700 °C for 100 h under the Ar cover gas. After corrosion, significant weight loss was observed in the alloy X750. Weight loss registered in SS316 and SS304 was also high. However, Hastelloy-N gained weight after exposure to molten salt corrosion. This could be attributed to electrochemical plating of corrosion products from other alloys on Hastelloy-N surface. SEM–energy-dispersive X-ray spectroscopy (EDXS) scans of cross-section of alloys revealed maximum corrosion damage to the depth of 250 µm in X750, in contrast to only 20 µm on Hastelloy-N. XPS wide survey scans revealed the presence of Fe, Cr, and Ni elements on the surface of all corroded alloys. In addition, Cr clusters were formed at the triple junctions of grains, as confirmed by SEM–EBSD (Electron Back Scattered Diffraction) analysis. The order of corrosion resistance in FLiNaK environment was X750 < SS316 < SS304 < Hastelloy-N.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Chao Zhang ◽  
Xinhua Sun

The corrosion resistance of laser-welded composite arch wire (CoAW) with Cu interlayer between NiTi shape memory alloy and stainless steel wire in artificial saliva with different acidities and loads was studied. It was found that both the solution pH and the stress had a significant influence on the corrosion behaviors of the CoAW samples. Decreasing the solution pH or increasing the loading stress caused the increase of Cu release and weight loss. The corroded morphology formed on the surfaces of the CoAW was the consequence under the combined effect of corrosion and stress.


2013 ◽  
Vol 203-204 ◽  
pp. 335-338 ◽  
Author(s):  
Bożena Łosiewicz ◽  
Magdalena Popczyk ◽  
Tomasz Goryczka ◽  
Józef Lelątko ◽  
Agnieszka Smołka ◽  
...  

The NiTi alloy (50.6 at.% Ni) passivated for 30 min at 130°C by autoclaving has been studied towards corrosion resistance in aqueous solutions of 3% NaCl, 0.1 M H2SO4, 1 M H2SO4 and HBSS. Structure and thickness of the passive layer (TiO2, rutile) were examined by X-ray reflectivity method and high resolution electron microscopy. Corrosion behavior of this oxide layer was investigated by open circuit potential method and polarization curves. It was found that the corrosion resistance of the passivated NiTi alloy is strongly dependent on the type of corrosive environment. The higher corrosion resistance of the tested samples was revealed in sulfate solutions as compared to chloride ones. The highest resistance to electrochemical corrosion of the NiTi alloy was observed in 0.1 M H2SO4 solution. Susceptibility to pitting corrosion of the tested samples was observed which increased with the concentration rise of chlorine anions in solution. Electrochemical tests for 316L stainless steel carried out under the same experimental conditions revealed a weaker corrosion resistance in all solutions as compared to the highly corrosion resistant NiTi alloy.


Sign in / Sign up

Export Citation Format

Share Document