scholarly journals Long-lived crustal damage zones associated with fault intersections in the high Andes of Central Chile

2019 ◽  
Vol 46 (2) ◽  
pp. 223 ◽  
Author(s):  
José Meulen Piquer Romo ◽  
Gonzalo Yáñez ◽  
Orlando Rivera ◽  
David Cooke

Long-lived, high-angle fault systems constitute high-permeability zones that can localize the upward flow of hydrothermal fluids and magma throughout the upper crust. Intersections of these types of structures can develop complex interference patterns, which constitute volumes of damaged rock (networks of small-scale faults and fractures) where permeability may be significantly enhanced. This is relevant for understanding regional-scale structural controls on the emplacement of hydrothermal mineral deposits and volcanic centers, and also on the distribution of areas of active upper-crustal seismicity. In the high Andes of central Chile, regional-scale geophysical (magnetic, gravimetric, seismic) and structural datasets demonstrate that the architecture of this Andean segment is defined by NW- and NE-striking fault systems, oblique to the N-S trend of the magmatic arc. Fault systems with the same orientations are well developed in the basement of the Andes. The intersections of conjugate arc-oblique faults constitute the site of emplacement of Neogene intrusive complexes and giant porphyry Cu-Mo deposits, and define the location of major clusters of upper-crustal earthquakes and active volcanic centers, suggesting that these fault systems are still being reactivated under the current stress regime. A proper identification of one-dimensional, lithospheric-scale high-permeability zones located at the intersections of high-angle, arc-transverse fault systems could be the key to understanding problems such as the structural controls on magmatic and hydrothermal activity and the patterns of upper-crustal seismicity in the high Andes and similar orogenic belts

2021 ◽  
Vol 25 (3) ◽  
pp. 309-321
Author(s):  
Semir Över ◽  
Süha Özden ◽  
Esra Kalkan Ertan ◽  
Fatih Turhan ◽  
Zeynep Coşkun ◽  
...  

In the Aegean Sea, the western part of Gökova Gulf, Kos and Bodrum were struck by a 6.6 (Mw) earthquake on July 20, 2017. The fault plane solution for the main shock shows an E-W striking normal type fault with approximately N-S (N4°E) tensional axis (T-axis). Fault plane solutions of 33 aftershocks show two groups of normal type fault with E-W and NE-SW to ENE-WSW orientations. The inversion of the focal mechanisms of the aftershocks yields two different normal faulting stress regimes: one is characterized by an approximately N-S (N5°E) σ3 axis (minimum horizontal stress axis). This extension is obtained from 13 focal mechanisms of aftershocks with approximately E-W direction. The other is characterized by approximately NW-SE (N330°E) σ3 axis. The latter is calculated from 21 seismic faults of aftershocks with approximately NE-SW direction. These aftershocks occurred on relatively small-scale faults that were directed from NE-SW to ENE-WSW, and possibly contributed to expansion of the basin in the west. The 24 focal mechanisms of earthquakes which occurred since 1933 in and around Gökova Basin are introduced into the inversion analysis to obtain the stress state effective in a wider region. The inversion yields an extensional stress regime characterized by an approximately N-S (N355°E) σ3 axis. The E-W directional metric faults, measured in the central part of Gökova Fault Zone bordering the Gökova Gulf in the north, also indicate N-S extension. The NE-SW extension obtained from NE-SW aftershocks appears to be more local and is responsible for the expansion of the western part of the asymmetric Gökova Basin. This N-S extension which appears to act on a regional-scale may be attributed to the geodynamic effects related to the combined forces of the southwestward extrusion of Anatolia and the roll-back process of African subduction beneath Anatolia.


Author(s):  
Heye Reemt Bogena

Central elements of the TERENO network are “terrestrial observatories” at the catchment scale which were selected in climate sensitive regions of Germany for the regional analyses of climate change impacts. Within these observatories small scale research facilities and test areas are placed in order to accomplish energy, water, carbon and nutrient process studies across the different compartments of the terrestrial environment. Following a hierarchical scaling approach (point-plot-field) these detailed information and the gained knowledge will be transferred to the regional scale using integrated modelling approaches. Furthermore, existing research stations are enhanced and embedded within the observatories. In addition, mobile measurement platforms enable monitoring of dynamic processes at the local scale up to the determination of spatial pattern at the regional scale are applied within TERENO.


Geosciences ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 68 ◽  
Author(s):  
Dorrik Stow ◽  
Zeinab Smillie

The distinction between turbidites, contourites and hemipelagites in modern and ancient deep-water systems has long been a matter of controversy. This is partly because the processes themselves show a degree of overlap as part of a continuum, so that the deposit characteristics also overlap. In addition, the three facies types commonly occur within interbedded sequences of continental margin deposits. The nature of these end-member processes and their physical parameters are becoming much better known and are summarised here briefly. Good progress has also been made over the past decade in recognising differences between end-member facies in terms of their sedimentary structures, facies sequences, ichnofacies, sediment textures, composition and microfabric. These characteristics are summarised here in terms of standard facies models and the variations from these models that are typically encountered in natural systems. Nevertheless, it must be acknowledged that clear distinction is not always possible on the basis of sedimentary characteristics alone, and that uncertainties should be highlighted in any interpretation. A three-scale approach to distinction for all deep-water facies types should be attempted wherever possible, including large-scale (oceanographic and tectonic setting), regional-scale (architecture and association) and small-scale (sediment facies) observations.


2019 ◽  
Vol 104 (Suppl 1) ◽  
pp. S3-S12 ◽  
Author(s):  
Kate M Milner ◽  
Raquel Bernal Salazar ◽  
Sunil Bhopal ◽  
Alexandra Brentani ◽  
Pia Rebello Britto ◽  
...  

Translating the Nurturing Care Framework and unprecedented global policy support for early child development (ECD) into action requires evidence-informed guidance about how to implement ECD programmes at national and regional scale. We completed a literature review and participatory mixed-method evaluation of projects in Saving Brains®, Grand Challenges Canada® funded ECD portfolio across 23 low- and middle-income countries (LMIC). Using an adapted programme cycle, findings from evaluation related to partnerships and leadership, situational analyses, and design for scaling ECD were considered. 39 projects (5 ‘Transition to Scale’ and 34 ‘Seed’) were evaluated. 63% were delivered through health and 84% focused on Responsive Caregiving and Early Learning (RCEL). Multilevel partnerships, leadership and targeted situational analysis were crucial to design and adaptation. A theory of change approach to consider pathways to impact was useful for design, but practical situational analysis tools and local data to guide these processes were lacking. Several RCEL programmes, implemented within government services, had positive impacts on ECD outcomes and created more enabling caregiving environments. Engagement of informal and private sectors provided an alternative approach for reaching children where government services were sparse. Cost-effectiveness was infrequently measured. At small-scale RCEL interventions can be successfully adapted and implemented across diverse settings through processes which are responsive to situational analysis within a partnership model. Accelerating progress will require longitudinal evaluation of ECD interventions at much larger scale, including programmes targeting children with disabilities and humanitarian settings with further exploration of cost-effectiveness, critical content and human resources.


2020 ◽  
Vol 117 (16) ◽  
pp. 8757-8763 ◽  
Author(s):  
Ji Nie ◽  
Panxi Dai ◽  
Adam H. Sobel

Responses of extreme precipitation to global warming are of great importance to society and ecosystems. Although observations and climate projections indicate a general intensification of extreme precipitation with warming on global scale, there are significant variations on the regional scale, mainly due to changes in the vertical motion associated with extreme precipitation. Here, we apply quasigeostrophic diagnostics on climate-model simulations to understand the changes in vertical motion, quantifying the roles of dry (large-scale adiabatic flow) and moist (small-scale convection) dynamics in shaping the regional patterns of extreme precipitation sensitivity (EPS). The dry component weakens in the subtropics but strengthens in the middle and high latitudes; the moist component accounts for the positive centers of EPS in the low latitudes and also contributes to the negative centers in the subtropics. A theoretical model depicts a nonlinear relationship between the diabatic heating feedback (α) and precipitable water, indicating high sensitivity of α (thus, EPS) over climatological moist regions. The model also captures the change of α due to competing effects of increases in precipitable water and dry static stability under global warming. Thus, the dry/moist decomposition provides a quantitive and intuitive explanation of the main regional features of EPS.


2015 ◽  
Vol 15 (11) ◽  
pp. 6127-6146 ◽  
Author(s):  
M. Hummel ◽  
C. Hoose ◽  
M. Gallagher ◽  
D. A. Healy ◽  
J. A. Huffman ◽  
...  

Abstract. Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a fraction of 15% of the total aerosol mass over land and reach average number concentrations of 26 L−1. The results confirm that fungal spores and biological particles may account for a major fraction of supermicron aerosol particle number and mass concentration over vegetated continental regions and should thus be explicitly considered in air quality and climate studies.


1971 ◽  
Vol 8 (2) ◽  
pp. 217-242 ◽  
Author(s):  
Mel R. Stauffer ◽  
Amar Mukherjee

Within the Flin Flon Basin, Precambrian meta-sandstones and conglomerates belonging to the Missi Group have been complexly deformed as a result of three periods of deformation. The first two periods (P1 and P2) involved folding but no apparent faulting, the last (P3) involved both folding and faulting. Progressive metamorphism (M2), within the greenschist facies, occurred during the second phase (P2) and aided in the formation of a pronounced axial-plane foliation (S2). Small-scale folding and retrograde metamorphism (M3) occurred along faults formed during the last phase (P3).The faults in this area all appear to be high angle, oblique-slip reverse faults and can be interpreted as having formed during a single orogenic event (P3) although there is sequence in their initiation. The net-slip directions of different faults are approximately the same, and plunge moderately to the southeast, with either the east or south side upthrown, depending on the attitude of the fault.


2015 ◽  
Vol 55 (1) ◽  
pp. 119 ◽  
Author(s):  
Adam Bailey ◽  
Rosalind King ◽  
Simon Holford ◽  
Joshua Sage ◽  
Martin Hand ◽  
...  

Declining conventional hydrocarbon reserves have triggered exploration towards unconventional energy, such as CSG, shale gas and enhanced geothermal systems. Unconventional play viability is often heavily dependent on the presence of secondary permeability in the form of interconnected natural fracture networks that commonly exert a prime control over permeability due to low primary permeabiliy of in situ rock units. Structural permeability in the Northern Perth, SA Otway, and Northern Carnarvon basins is characterised using an integrated geophysical and geological approach combining wellbore logs, seismic attribute analysis and detailed structural geology. Integration of these methods allows for the identification of faults and fractures across a range of scales (millimetre to kilometre), providing crucial permeability information. New stress orientation data is also interpreted, allowing for stress-based predictions of fracture reactivation. Otway Basin core shows open fractures are rarer than image logs indicate; this is due to the presence of fracture-filling siderite, an electrically conductive cement that may cause fractures to appear hydraulically conductive in image logs. Although the majority of fractures detected are favourably oriented for reactivation under in situ stresses, fracture fill primarily controls which fractures are open, demonstrating that lithological data is often essential for understanding potential structural permeability networks. The Carnarvon Basin is shown to host distinct variations in fracture orientation attributable to the in situ stress regime, regional tectonic development and local structure. A detailed understanding of the structural development, from regional-scale (hundreds of kilometres) down to local-scale (kilometres), is demonstrated to be of importance when attempting to understand structural permeability.


2020 ◽  
Vol 28 (8) ◽  
pp. 2657-2674
Author(s):  
Markus Theel ◽  
Peter Huggenberger ◽  
Kai Zosseder

AbstractThe favorable overall conditions for the utilization of groundwater in fluvioglacial aquifers are impacted by significant heterogeneity in the hydraulic conductivity, which is related to small-scale facies changes. Knowledge of the spatial distribution of hydraulically relevant hydrofacies types (HF-types), derived by sedimentological analysis, helps to determine the hydraulic conductivity distribution and thus contribute to understanding the hydraulic dynamics in fluvioglacial aquifers. In particular, the HF-type “open framework gravel (OW)”, which occurs with the HF-type “bimodal gravel (BM)” in BM/OW couplings, has an intrinsically high hydraulic conductivity and significantly impacts hydrogeological challenges such as planning excavation-pit drainage or the prognosis of plumes. The present study investigates the properties and spatial occurrence of HF-types in fluvioglacial deposits at regional scale to derive spatial distribution trends of HF-types, by analyzing 12 gravel pits in the Munich gravel plain (southern Germany) as analogues for outwash plains. The results are compared to the reevaluation of 542 pumping tests. Analysis of the HF-types and the pumping test data shows similar small-scale heterogeneities of the hydraulic conductivity, superimposing large-scale trends. High-permeability BM/OW couples and their dependence on recognizable discharge types in the sedimentary deposits explain sharp-bounded small-scale heterogeneities in the hydraulic conductivity distribution from 9.1 × 10−3 to 2.2 × 10−4 m/s. It is also shown that high values of hydraulic conductivity can be interpolated on shorter distance compared to lower values. While the results of the HF-analysis can be transferred to other fluvioglacial settings (e.g. braided rivers), regional trends must be examined with respect to the surrounding topography.


Sign in / Sign up

Export Citation Format

Share Document