scholarly journals Effects of epigallocatechin gallate on total antioxidant capacity, biomarkers of systemic low-grade inflammation and metabolic risk factors in patients with type 2 diabetes mellitus: the role of FTO-rs9939609 polymorphism

Author(s):  
Seyedahmad Hosseini ◽  
Meysam Alipour ◽  
Mehrnoosh Zakerkish ◽  
Bahman Cheraghian ◽  
Pegah Ghandil
2014 ◽  
Vol 222 (3) ◽  
pp. R113-R127 ◽  
Author(s):  
Milos Mraz ◽  
Martin Haluzik

Adipose tissue (AT) lies at the crossroad of nutrition, metabolism, and immunity; AT inflammation was proposed as a central mechanism connecting obesity with its metabolic and vascular complications. Resident immune cells constitute the second largest AT cellular component after adipocytes and as such play important roles in the maintenance of AT homeostasis. Obesity-induced changes in their number and activity result in the activation of local and later systemic inflammatory response, marking the transition from simple adiposity to diseases such as type 2 diabetes mellitus, arterial hypertension, and ischemic heart disease. This review has focused on the various subsets of immune cells in AT and their role in the development of AT inflammation and obesity-induced insulin resistance.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Yuriko I. Sánchez-Zamora ◽  
Miriam Rodriguez-Sosa

Autoimmunity and chronic low-grade inflammation are hallmarks of diabetes mellitus type one (T1DM) and type two (T2DM), respectively. Both processes are orchestrated by inflammatory cytokines, including the macrophage migration inhibitory factor (MIF). To date, MIF has been implicated in both types of diabetes; therefore, understanding the role of MIF could affect our understanding of the autoimmune or inflammatory responses that influence diabetic pathology. This review highlights our current knowledge about the involvement of MIF in both types of diabetes in the clinical environment and in experimental disease models.


2020 ◽  
Vol 154 (5) ◽  
pp. 151-156 ◽  
Author(s):  
Qingqing Zhang ◽  
Yucheng Wu ◽  
Yu Lu ◽  
Xiaoqiang Fei

Author(s):  
Charmaine S. Tam ◽  
Leanne M. Redman

AbstractObesity is characterized by a state of chronic low-grade inflammation due to increased immune cells, specifically infiltrated macrophages into adipose tissue, which in turn secrete a range of proinflammatory mediators. This nonselective low-grade inflammation of adipose tissue is systemic in nature and can impair insulin signaling pathways, thus, increasing the risk of developing insulin resistance and type 2 diabetes. The aim of this review is to provide an update on clinical studies examining the role of adipose tissue in the development of obesity-associated complications in humans. We will discuss adipose tissue inflammation during different scenarios of energy imbalance and metabolic dysfunction including obesity and overfeeding, weight loss by calorie restriction or bariatric surgery, and conditions of insulin resistance (diabetes, polycystic ovarian syndrome).


Author(s):  
Siphosethu Cassandra Maphumulo ◽  
Etheresia Pretorius

AbstractType 2 diabetes mellitus (T2DM) is a multifactorial chronic metabolic disease characterized by chronic hyperglycemia due to insulin resistance and a deficiency in insulin secretion. The global diabetes pandemic relates primarily to T2DM, which is the most prevalent form of diabetes, accounting for over 90% of all cases. Chronic low-grade inflammation, triggered by numerous risk factors, and the chronic activation of the immune system are prominent features of T2DM. Here we highlight the role of blood cells (platelets, and red and white blood cells) and vascular endothelial cells as drivers of systemic inflammation in T2DM. In addition, we discuss the role of microparticles (MPs) in systemic inflammation and hypercoagulation. Although once seen as inert by-products of cell activation or destruction, MPs are now considered to be a disseminated storage pool of bioactive effectors of thrombosis, inflammation, and vascular function. They have been identified to circulate at elevated levels in the bloodstream of individuals with increased risk of atherothrombosis or cardiovascular disease, two significant hallmark conditions of T2DM. There is also general evidence that MPs activate blood cells, express proinflammatory and coagulant effects, interact directly with cell receptors, and transfer biological material. MPs are considered major players in the pathogenesis of many systemic inflammatory diseases and may be potentially useful biomarkers of disease activity and may not only be of prognostic value but may act as novel therapeutic targets.


2018 ◽  
Vol 17 (8) ◽  
pp. 595-603 ◽  
Author(s):  
Nurul ‘Ain Arshad ◽  
Teoh Seong Lin ◽  
Mohamad Fairuz Yahaya

Background & Objective: Metabolic syndrome (MetS) is an interconnected group of physiological, biochemical, clinical and metabolic factors that directly increase the risk of cardiovascular disease, type 2 diabetes mellitus (T2DM) and mortality. Rising evidence suggests that MetS plays a significant role in the progression of Alzheimer’s disease and other neurodegenerative diseases. Nonetheless, the factors linking this association has not yet been elucidated. As we are facing an increasing incidence of obesity and T2DM in all stages of life, understanding the association of MetS and neurodegenerative diseases is crucial to lessen the burden of the disease. Conclusion: In this review, we will discuss the possible mechanisms which may relate the association between MetS and cognitive decline which include vascular damages, elevation of reactive oxygen species (ROS), insulin resistance and low-grade inflammation.


Sign in / Sign up

Export Citation Format

Share Document