scholarly journals Removal of isopropyl alcohol by electrical discharge from an aqueous solution with microbubbles

2021 ◽  
pp. 32-37
Author(s):  
Vladislav Panov ◽  
Vladimir Pecherkin ◽  
Leonid Vasilyak ◽  
Yurii Kulikov ◽  
Sergei Vetchinin ◽  
...  

The removal of isopropyl alcohol impurities with an initial volume concentration of 20 % in a cell with a working area volume of 831 cm 3 in a water flow with fine air bubbles with a solution flow rate of 2 m 3/h by a quasi-volume electric discharge obtained using a multi-electrode system of sectioned needle electrodes has been experimentally investigated. At an alternating voltage of an industrial frequency of 50 Hz, the creation of a finely dispersed phase with air bubbles in an electric discharge cell increases the efficiency of isopropyl alcohol removal from the water flow by 6 %.

Polymers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1056 ◽  
Author(s):  
Asiyah Esmail ◽  
João R. Pereira ◽  
Patrícia Zoio ◽  
Sara Silvestre ◽  
Ugur Deneb Menda ◽  
...  

Poly(hydroxyalkanoates) (PHAs) with differing material properties, namely, the homopolymer poly(3-hydroxybutyrate), P(3HB), the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate), P(3HB-co-3HV), with a 3HV content of 25 wt.% and a medium chain length PHA, and mcl-PHA, mainly composed of 3-hydroxydecanoate, were studied as scaffolding material for cell culture. P(3HB) and P(3HB-co-3HV) were individually spun into fibers, as well as blends of the mcl-PHA with each of the scl-PHAs. An overall biopolymer concentration of 4 wt.% was used to prepare the electrospinning solutions, using chloroform as the solvent. A stable electrospinning process and good quality fibers were obtained for a solution flow rate of 0.5 mL h−1, a needle tip collector distance of 20 cm and a voltage of 12 kV for P(3HB) and P(3HB-co-3HV) solutions, while for the mcl-PHA the distance was increased to 25 cm and the voltage to 15 kV. The scaffolds’ hydrophilicity was significantly increased under exposure to oxygen plasma as a surface treatment. Complete wetting was obtained for the oxygen plasma treated scaffolds and the water uptake degree increased in all treated scaffolds. The biopolymers crystallinity was not affected by the electrospinning process, while their treatment with oxygen plasma decreased their crystalline fraction. Human dermal fibroblasts were able to adhere and proliferate within the electrospun PHA-based scaffolds. The P(3HB-co-3HV): mcl-PHA oxygen plasma treated scaffold highlighted the most promising results with a cell adhesion rate of 40 ± 8%, compared to 14 ± 4% for the commercial oxygen plasma treated polystyrene scaffold AlvetexTM. Scaffolds based on P(3HB-co-3HV): mcl-PHA blends produced by electrospinning and submitted to oxygen plasma exposure are therefore promising biomaterials for the development of scaffolds for tissue engineering.


2020 ◽  
Vol 71 (1) ◽  
pp. 1-12
Author(s):  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Mohammed K. Hussain ◽  
Firas Hashim Kamar ◽  
Gheorghe Nechifor ◽  
...  

The biosorption performance of both batch and liquid-solid fluidized bed operations of dead fungal biomass type (Agaricusbisporus ) for removal of methylene blue from aqueous solution was investigated. In batch system, the adsorption capacity and removal efficiency of dead fungal biomass were evaluated. In fluidized bed system, the experiments were conducted to study the effects of important parameters such as particle size (701-1400�m), initial dye concentration(10-100 mg/L), bed depth (5-15 cm) and solution flow rate (5-20 ml/min) on breakthrough curves. In batch method, the experimental data was modeled using several models (Langmuir,Freundlich, Temkin and Dubinin-Radushkviechmodels) to study equilibrium isotherms, the experimental data followed Langmuir model and the results showed that the maximum adsorption capacity obtained was (28.90, 24.15, 21.23 mg/g) at mean particle size (0.786, 0.935, 1.280 mm) respectively. In Fluidized-bed method, the results show that the total ion uptake and the overall capacity will be decreased with increasing flow rate and increased with increasing initial concentrations, bed depth and decreasing particle size.


Author(s):  
M. Shunmugasundaram ◽  
A. Praveenkumar ◽  
L. Ponraj Sankar ◽  
S. Sivasankar

Mechanical properties of materials are enhanced by different methods to increase the usage of the materials. In this research spray pyrolysis method is employed to increase the mechanical characteristics of three different materials. The tin oxide is chosen as coated material and aluminium, brass, mild steel are selected as substrate materials. The 500nm thin film is developed over the substrate materials by spray pyrolysis. The substrate temperature are chosen as 300? C for aluminium, 400? C for brass and mildsteel. Nozzle to substrate distance is 0.4 m, substrate temperature is 300? C for aluminium and 400? C for solution concentration as 0.2 mole and solution flow rate is 1ml/min are selected for constant deposition parameters. The hardness and tensile strength result clearly shows that strength is increased by adding the coating over the surface. The material is heated above crystallization temperature and SnO2 increases the tensile and hardness strength of the materials. The triangular metrological microscope is used to examine the microstructure of non coated and coated substrate materials. The microstructural analysis is showed that the uncoated surface of the substrate material is full of rough and pores. And displays that the tin oxide coated surface of the substrates after the initial deposition disclosed a surface with a agglomeration of tin oxide in homogeneous and uniform than the uncoated substrates.


2019 ◽  
Vol 12 (3) ◽  
pp. 135-143 ◽  
Author(s):  
Fatin Abdul_kareem Ashoor ◽  
Amer D. Zmat ◽  
Muthanna H. AlDahhan

A lab scale pellet reactor (PR) was designed and fabricated to carry out extensive investigations on the removal efficiency of the hardness of groundwater.  The groundwater of 2200 – 2600 mg/L hardness was collected from Abdulla Ibnalhassan wells area located at the west desert of Al-Shinafiyah district (70 km to the southwest of Al-Dewaniyah city, Iraq). Both hydrodynamic parameters of the pellet reactor (porosity and fluidized bed height) and the parameters of calcium carbonate crystallization process (calcium carbonate equilibrium, pellet size, and density) were modeled and compared with the experimental results of the lab scale pellet reactor. The comparison showed that fair agreement between modeled and measured results was observed. The removal efficiency of both calcium and magnesium ions were 62.5-99% and 83-99% respectively. The removal efficiency was found to be strongly dependent on pH and the ratio of NaOH solution flow rate to the groundwater flow rate in the pellet reactor.


2010 ◽  
Vol 2010 ◽  
pp. 1-7 ◽  
Author(s):  
Linjing Zhu ◽  
Hongqiao Lan ◽  
Bingjing He ◽  
Wei Hong ◽  
Jun Li

Encapsulation of menthol in beeswax was prepared by a modified particles from gas-saturated solutions (PGSS) process with controlling the gas-saturated solution flow rate. Menthol/beeswax particles with size in the range of 2–50 μm were produced. The effects of the process conditions, namely, the pre-expansion pressure, pre-expansion temperature, gas-saturated solution flow rate, and menthol composition, on the particle size, particle size distribution, and menthol encapsulation rate were investigated. Results indicated that in the range of studied conditions, increase of the pressure, decrease of the gas-saturated solution flow rate, and decrease of the menthol mass fraction can decrease the particle size and narrow particle size distribution of the produced menthol/beeswax microparticles. An N2-blowing method was proposed to measure the menthol release from the menthol/beeswax microparticles. Results showed that the microparticles have obvious protection of menthol from its volatilization loss.


Author(s):  
Karen Chang Yan ◽  
Pamela Hitscherich ◽  
James Ferrie

Tissue engineering is a promising aspect of regenerative medicine that is aimed at constructing functional tissues and organs. While progresses in tissue engineering have led successful clinic applications, challenges remain for more complex tissues/organs that require concerted efforts from multiple types of cells. One of the key issues in building replacements for complex tissues/organs is to mimic the organ’s complex natural organization using a mixture of engineered materials and living cells [1]. Electrospinning has shown promise as a technique to create the microenvironment necessary for cell growth and proliferation for tissue engineering applications[2–4], while multiple fabrication methods have been developed to manipulate live cells(e.g. cell printing) [5–7]. To this end, a system integrating polymer electrospinning technique and pressure-driven cell deposition method is currently under development for forming hybrid tissue constructs with living cells and polymers. This study focuses on examining morphology of electrospun fibers as function of processing parameters including working distance and solution flow rate.


Membranes ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 171 ◽  
Author(s):  
Anton Kozmai ◽  
Elena Goleva ◽  
Vera Vasil’eva ◽  
Victor Nikonenko ◽  
Natalia Pismenskaya

A simple non-steady state mathematical model is proposed for the process of purification of an amino acid solution from mineral salts by the method of neutralization dialysis (ND), carried out in a circulating hydrodynamic mode. The model takes into account the characteristics of membranes (thickness, exchange capacity and electric conductivity) and solution (concentration and components nature) as well as the solution flow rate in dialyzer compartments. In contrast to the known models, the new model considers a local change in the ion concentration in membranes and the adjacent diffusion layers. In addition, the model takes into consideration the ability of the amino acid to enter the protonation/deprotonation reactions. A comparison of the results of simulations with experimental data allows us to conclude that the model adequately describes the ND of a strong electrolyte (NaCl) and amino acid (phenylalanine) mixture solutions in the case where the diffusion ability of amino acids in membranes is much less, than mineral salts. An example shows the application of the model to predict the fluxes of salt ions through ion exchange membranes as well as pH of the desalination solution at a higher than in experiments flow rate of solutions in ND dialyzer compartments.


Fibers ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 29
Author(s):  
Jopeth Ramis ◽  
Bryan Pajarito ◽  
Crisneil Natividad ◽  
Mark Jared Van Ocampo ◽  
Crizaldy Tugade ◽  
...  

We report the synthesis of presumably a “nanoridge” from the electrospinning of a hydrophilic polymer–protein blend. The material exhibits vertical elevation from the substrate, distinct from the morphologies seen in electrospinning. It is hypothesized that the formation of the nanostructured ridges is due to the migration of the charged protein to the apex through a highly polarized electric field in electrospinning conditions. In this study, we assessed the polyvinyl alcohol–egg albumin (PVA–EA) system in a solvent comprising of water, formic and acetic acid, together with the tip-to-collector distance (TCD) and solution flowrate. To quantify the factor effects in the surface properties of the material, a Taguchi design of experiment was used. The ridge heights observed ranged from 84.8–639.9 nm, and the material height is predominantly affected by the PVA–EA ratio and solution flow rate. The root mean square roughness was influenced by the TCD and flow rate, which has values ranging from 11.37–57.56 nm. In evaluating the sharpness of the ridge, we used the radius of curvature, where the TCD highly affects the apex sharpness. The work offers not just a likely new class of morphology, but a new perspective on the surface characterization of an electrospun material which could affect the performance of such a use in biological and physical systems.


Sign in / Sign up

Export Citation Format

Share Document