scholarly journals Antioxidant activity of winter wheat when treated with the biopreparation Nigor++

2021 ◽  
Vol 6 (48) ◽  
pp. 33-33
Author(s):  
Ninel Pavlovskaya ◽  
◽  
Irina Gorkova ◽  
Irina Gagarina ◽  
Anna Gavrilova

The influence of stress factors on the plant can lead to deterioration of plant functioning and loss of yield. The use of biological preparations based on plant cell elicitors in the technology of grain cultivation makes it possible to regulate the antioxidant activity of plants under abiotic stress. Treatment with the biopreparation Nigor++ in the tillering phase leads to noticeable changes in the balance of antioxidant substances in winter wheat plants Moskovskaya 39. Repeated treatment of Nigor++ after 16 days in the earing phase reduces AOA by 21.8, and by the flowering phase leads to a drop in this indicator by 51% relative to the tillering phase and by 59% relative to control plants. The use of Nigor++ increases the immune status of plants, reduces the concentration of antioxidant substances or reduces their activity due to the formation of stable complexes with magnesium ions included in BP, as well as binding them to highly active free radicals that occur during autoxidation, converting them to low-activity. Keywords: ANTIOXIDANTS, BIOLOGICAL PRODUCTS, WINTER WHEAT, ANTIOXIDANT ACTIVITY, REACTIVE OXYGEN SPECIES, ELICITORS, BIOFLAVONOIDS

Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 388
Author(s):  
Xiao Dan Hui ◽  
Gang Wu ◽  
Duo Han ◽  
Xi Gong ◽  
Xi Yang Wu ◽  
...  

In this study, blueberry and blackcurrant powder were chosen as the phenolic-rich enrichments for oat bran. A Rapid Visco Analyser was used to form blueberry and blackcurrant enriched oat pastes. An in vitro digestion process evaluated the changes of phenolic compounds and the in vitro antioxidant potential of extracts of pastes. The anthocyanidin profiles in the extracts were characterised by the pH differential method. The results showed that blueberry and blackcurrant powder significantly increased the content of phenolic compounds and the in vitro antioxidant capacity of pastes, while the total flavonoid content decreased after digestion compared to the undigested samples. Strong correlations between these bioactive compounds and antioxidant values were observed. Lipopolysaccharide-stimulated RAW264.7 macrophages were used to investigate the intracellular antioxidant activity of the extracts from the digested oat bran paste with 25% enrichment of blueberry or blackcurrant powder. The results indicated that the extracts of digested pastes prevented the macrophages from experiencing lipopolysaccharide (LPS)-stimulated intracellular reactive oxygen species accumulation, mainly by the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2) signalling pathway. These findings suggest that the bioactive ingredients from blueberry and blackcurrant powder enhanced the in vitro and intracellular antioxidant capacity of oat bran pastes, and these enriched pastes have the potential to be utilised in the development of the functional foods.


Marine Drugs ◽  
2021 ◽  
Vol 19 (10) ◽  
pp. 549
Author(s):  
Noémie Coulombier ◽  
Thierry Jauffrais ◽  
Nicolas Lebouvier

The demand for natural products isolated from microalgae has increased over the last decade and has drawn the attention from the food, cosmetic and nutraceutical industries. Among these natural products, the demand for natural antioxidants as an alternative to synthetic antioxidants has increased. In addition, microalgae combine several advantages for the development of biotechnological applications: high biodiversity, photosynthetic yield, growth, productivity and a metabolic plasticity that can be orientated using culture conditions. Regarding the wide diversity of antioxidant compounds and mode of action combined with the diversity of reactive oxygen species (ROS), this review covers a brief presentation of antioxidant molecules with their role and mode of action, to summarize and evaluate common and recent assays used to assess antioxidant activity of microalgae. The aim is to improve our ability to choose the right assay to assess microalgae antioxidant activity regarding the antioxidant molecules studied.


2021 ◽  
Vol 9 ◽  
Author(s):  
David. E. Wright ◽  
Nikolaus Panaseiko ◽  
Patrick O’Donoghue

Thioredoxin Reductase 1 (TrxR1) is an enzyme that protects human cells against reactive oxygen species generated during oxidative stress or in response to chemotherapies. Acetylation of TrxR1 is associated with oxidative stress, but the function of TrxR1 acetylation in oxidizing conditions is unknown. Using genetic code expansion, we produced recombinant and site-specifically acetylated variants of TrxR1 that also contain the non-canonical amino acid, selenocysteine, which is essential for TrxR1 activity. We previously showed site-specific acetylation at three different lysine residues increases TrxR1 activity by reducing the levels of linked dimers and low activity TrxR1 tetramers. Here we use enzymological studies to show that acetylated TrxR1 is resistant to both oxidative inactivation and peroxide-induced multimer formation. To compare the effect of programmed acetylation at specific lysine residues to non-specific acetylation, we produced acetylated TrxR1 using aspirin as a model non-enzymatic acetyl donor. Mass spectrometry confirmed aspirin-induced acetylation at multiple lysine residues in TrxR1. In contrast to unmodified TrxR1, the non-specifically acetylated enzyme showed no loss of activity under increasing and strongly oxidating conditions. Our data suggest that both site-specific and general acetylation of TrxR1 regulate the enzyme’s ability to resist oxidative damage.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Limei Qin ◽  
Jie Gan ◽  
Dechao Niu ◽  
Yueqiang Cao ◽  
Xuezhi Duan ◽  
...  

AbstractPursuing and developing effective methodologies to construct highly active catalytic sites to maximize the atomic and energy efficiency by material engineering are attractive. Relative to the tremendous researches of carbon-based single atom systems, the construction of bio-applicable single atom materials is still in its infancy. Herein, we propose a facile and general interfacial-confined coordination strategy to construct high-quality single-atom nanotherapeutic agent with Fe single atoms being anchored on defective carbon dots confined in a biocompatible mesoporous silica nanoreactor. Furthermore, the efficient energy conversion capability of silica-based Fe single atoms system has been demonstrated on the basis of the exogenous physical photo irradiation and endogenous biochemical reactive oxygen species stimulus in the confined mesoporous network. More importantly, the highest photothermal conversion efficiency with the mechanism of increased electron density and narrow bandgap of this single atom structure in defective carbon was proposed by the theoretical DFT calculations. The present methodology provides a scientific paradigm to design and develop versatile single atom nanotherapeutics with adjustable metal components and tune the corresponding reactions for safe and efficient tumor therapeutic strategy.


2018 ◽  
Vol 8 (3) ◽  
pp. 806-816 ◽  
Author(s):  
Shaohua Xie ◽  
Yuxi Liu ◽  
Jiguang Deng ◽  
Jun Yang ◽  
Xingtian Zhao ◽  
...  

The adsorbed o-xylene species can immediately react with active oxygen species at the highly active Pd–CoO interface between Pd NPs and meso-CoO, thus resulting in good catalytic performance of Pd/meso-CoO for o-xylene catalytic combustion.


2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk ◽  
Łukasz Paprotny ◽  
Agnieszka Celejewska ◽  
Dorota Szewczak ◽  
Dorota Wianowska

Abstract The imbalance between the production of Reactive Oxygen Species (ROS) and their sequestration promotes the formation of so-called oxidative stress conditions which are considered crucial in the aging process and development of many human diseases. Glutathione plays an essential role in the antioxidative barricade against ROS. Its role in the detoxification process of xenobiotics and carcinogen is also known. However, there are no comparative studies on the antioxidant properties of both biological samples and glutathione as well as the change in these properties as a result of exposure to various stress factors. This paper fills this gap comparing the antioxidant activity of serum and plasma samples of the known glutathione content with the activity of glutathione itself assessed by the different methods. In addition, it reveals a significant role of environmental xenobiotics in oxidative stress and differentiates the stress induced by different groups of drugs, among which the greatest one has been demonstrated for antiarrhythmic drugs and cytostatics. More importantly, it proves that human plasma is more resistant to stress factors and N-acetylcysteine clearly promotes the extension of antioxidant properties of both the plasma and serum samples. The latter conclusion is consistent with the implied preventive and/or supportive action of this drug against SARS-CoV-2.


Sign in / Sign up

Export Citation Format

Share Document