Are TEM and CTX Beta-Lactamase genes common among urinary isolates from Ain Shams University Hospitals, Intensive Care Units?

2021 ◽  
Vol 30 (2) ◽  
pp. 107-115
Author(s):  
Nadia M. Elsheshtawy ◽  
Amira E. Abdelhamid ◽  
Fagr Fathy Abdo ◽  
Shimaa A. Abdel Salam

Background: Many extended-spectrum β-lactamases (ESBLs) variants are known among Gram-negative bacilli, and are classified into different structural families as TEM, SHV, CTX-M, and OXA. Objectives: To detect the distribution of blaTEM and blaCTX-M genes among the Gram-negative isolates collected from urine samples from patients admitted to ICUs of Ain Shams University Hospitals, Egypt. Methodology: Forty Gram-negative urinary isolates were enrolled, and subjected to microbiological identification and antimicrobial susceptibility testing. Phenotypic detection of ESBLs production was done. Detection of blaTEM and blaCTX-M genes was done by PCR. Results: Phenotypically, 8(20%) isolates were ESBL producers and 32(80%) were non ESBL producers. BlaTEM gene was found in 15 isolates(37.5%) and blaCTX-M gene was found in 8 isolates(20%), while both genes were detected among five isolates. Conclusion: Molecular methods should be used for definitive identification of ESBLs. BlaTEM gene was more common than blaCTX-M gene in urine specimens in our setting.

2013 ◽  
Vol 141 (11-12) ◽  
pp. 775-779 ◽  
Author(s):  
Tatjana Markovic ◽  
Ljiljana Jeinic ◽  
Aleksandra Smitran ◽  
Miroslav Petkovic

Introduction. In Gram-negative bacteria, the production of beta-lactamases is the most important mechanism of resistance to beta-lactam antibiotics. In the Banja Luka region, there were no extensive researches on the prevalence and antimicrobial resistance of the extended-spectrum beta-lactamase (ESBL) producing Escherichia coli (E. coli) isolates. Objective. The aim of the present study was to determine the presence of ESBL producing E. coli isolates as the cause of the urinary tract infections in outpatients, the distribution of these ESBL isolates according to age and gender of patients and their susceptibility to antimicrobials. Methods. Urine specimens obtained from outpatients were cultured on chromogenic CPS-ID3 media. All plates showing significant (>105 cfu/ml) growth of E. coli in pure culture were further processed. Antimicrobial susceptibility testing was performed on VITEK TWO Compact using AST-GN27 cards for testing Gram negative bacteria and detection of ESBL producers. Results. Out of 2,195 isolates, 177 (8.1%) were ESBL producers. Ninety-two isolates were obtained from female patients (5% of E. coli isolated from women) and 85 isolates from male patients (23% of E. coli isolated from men). High percentage of ESBL isolates was detected in the infant age group under one year (36.7%) and in the age group over 60 years (28.8%). All ESBL isolates were susceptible to imipenem and resistant to ampicillin, piperacillin, cefazolin, cefotaxime, ceftazidime and cefepime. There was a significant resistance to amikacin (79.1%), gentamicin (76.8%), amoxicillin/clavulanate (54.8%) and trimethoprim/sulphamethoxazole (45.8%). Resistance to nutrofurantoin was 13.6%. Conclusion. This study has demonstrated the presence of ESBL producing E. coli urinary isolates in outpatients, and their extensive susceptibility to imipenem and nitrofurantoin.


KYAMC Journal ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 171-175
Author(s):  
Tania Rahman ◽  
Momtaz Begum ◽  
Sharmeen Sultana ◽  
SM Shamsuzzaman

Background: In recent years, Extended-spectrum beta-lactamase (ESBL) producing microorganisms have complicated treatment of infections due to resistance of ESBL producing strains to a wide range of antimicrobials. Objective: Target of this study was to determine the prevalence of ESBL producing gramnegative bacteria in neonatal sepsis cases and to reveal the antimicrobial susceptibility pattern of those isolated ESBL producers. Materials and Methods: This cross sectional study was carried out in Dhaka Medical College Hospital (DMCH) over a period of 12 months from January to December in 2016. Following isolation and identification of gram-negative bacteria from blood samples of suspected septicemic neonates, antimicrobial susceptibility test was performed by Kirby Bauer disk-diffusion method and ESBL producers were detected by Double Disk Synergy (DDS) test. Results: Among 52 Gram-negative bacteria isolated from 106 blood samples, 34.61% ESBL producers were detected and Enterobacter spp. (45%) was predominant followed by Klebsiella pneumoniae (33.33%). None of the ESBL producers was resistant to colistin and tigecycline. All ESBL producing Acinetobacter baumannii, 77.78% and 66.67% of ESBL producing Enterobacter spp and Klebsiella spp. respectively showed resistance to meropenem. All ESBL producers were resistant to piperacillintazobactam. Conclusion: Appropriate measures should be taken to prevent the spread of ESBL producing strains by combining strategies for infection prevention, control and rational use of antibiotics. KYAMC Journal Vol. 11, No.-4, January 2021, Page 171-175


Author(s):  
Ganiyat Shitta ◽  
Olufunmilola Makanjuola ◽  
Olusolabomi Adefioye ◽  
Olugbenga Adekunle Olowe

Background: Extended Spectrum Beta Lactamase (ESBL) production in gram negative bacteria confers multiple antibiotic resistance, adversely affecting antimicrobial therapy in infected individuals. ESBLs result from mutations in β-lactamases encoded mainly by the bla TEM,bla SHVand bla CTX-Mgenes. The prevalence of ESBL producing bacteria has been on the increase globally especially its upsurge among isolates from community-acquired infections. Aim: To determine ESBL prevalence and identify ESBL genes among clinical isolates in Osun State, Nigeria. Material and Methods: A cross-sectional study was carried out from August 2016 –July 2017 in Osun State, Nigeria. Three hundred and sixty Gram negative bacteria recovered from clinical samples obtained from both community and healthcare associated infections were tested. They included147 Escherichia coli(40.8%), 116 Klebsiella spp(32.2%), 44 Pseudomo-nas aeruginosa(12.2%) and23 Proteus vulgaris (6.4%) isolates. Others were Acinetobacter baumannii, Serratia rubidae, Citrobacter spp, Enterobacter spp and Salmonella typhi. Disk diffusion antibiotic susceptibility testing was carried out, isolates were screened for ESBL production and confirmed using standard laboratory procedures. ESBLs resistance genes were identified by Polymerase Chain Reaction (PCR). Results: All isolates demonstrated multiple antibiotic resistance. Resistance to ampicillin, amoxicillin with clavulanate and erythromycin was 100%, whereas resistance to Imipenem was very low (5.0%). : Overall prevalence of ESBL producers was 41.4% with Klebsiellaspp as the highest ESBL producing Enterobacteriacaea. ESBL producers were more prevalent among the hospital pathogens than community pathogens, 58% vs 29.5% (p=0.003). ESBL genes were detected in all ESBL producers with the blaCTX-Mgene predominating (47.0%) followed by blaTEM(30.9%) and blaSHVgene was the least, 22.1%. The blaCTX-Mgene was also the most prevalent in the healthcare pathogens (62%) but it accounted for only 25% in those of community origin. Conclusion: A high prevalence of ESBL producing gram negative organisms occurs both in healthcare and in the community in our environment with the CTX-M variant predominating. Efforts to control spread of these pathogens should be addressed.


Author(s):  
Kavi Aniis ◽  
Rajamanikandan Kcp ◽  
Arvind Prasanth D

<p>ABSTRACT<br />Objective: Beta-lactams are the group of antibiotics that contain a ring called as “beta-lactam ring,” which is responsible for the antibacterial activity.<br />The presence of resistance among Gram-negative organisms is due to the production of beta-lactamases enzymes that hydrolysis the beta-lactam ring<br />thereby conferring resistance to the organism. This study is undertaken to determine the prevalence of extended-spectrum beta-lactamase (ESBL)<br />producing Gram-negative organism from clinical samples.<br />Methods: A total of 112 clinical samples were taken for this study. The combined disc synergistic test (CDST) was used for the phenotypic detection<br />of ESBL producers from the clinical samples. The genotypic identification of ESBL producers was carried out by alkaline lysis method by isolation of<br />plasmid DNA.<br />Result: A total of 87 bacterial isolates were isolated and identified. Among them, Klebsiella (41%) was the predominant organism followed by<br />Escherichia coli (33%), Proteus (10%), Pseudomonas (10%), and Serratia (6%). Among the various bacterial isolates, Klebsiella showed a higher<br />percentage of resistance. The CDST showed that 8 isolates of Klebsiella, 3 isolates of E. coli, and 1 isolate of Pseudomonas were found to be ESBL<br />producers. The genotypic confirmation showed that the two bacterial isolates, namely, Klebsiella and E. coli were found to possess temoniera (TEM)<br />gene which was the 400-500 bp conferring resistance to the antibiotics.<br />Conclusion: The results of this study suggest that early detection of ESBL producing Gram-negative organism is a very important step in planning the<br />therapy of patient in Hospitals. CDST continues to be a good indicator in the detection of ESBL producers.<br />Keywords: Beta-lactamases, Gram-negative bacilli, Extended-spectrum beta-lactamase, Resistance, Combined disc synergistic test.</p><p> </p>


2017 ◽  
Vol 10 (1) ◽  
pp. 8-12
Author(s):  
Shikha Paul ◽  
Sanya Tahmina Jhora ◽  
Prashanta Prasun Dey ◽  
Bilkis Ara Begum

Detection of Extended spectrum beta lactamase (ESBL) enzyme producing bacteria in hospital settings is vital as ESBL genes are transmissible. This study was carried out to determine the distribution of ESBL producing gram negative isolates at a tertiary care hospital in Dhaka city which deals with the patients hailing from relatively low socioeconomic status.Onehundred and twenty four gram negative bacteria isolated from different clinical specimens from outpatient and inpatient departments of Sir Salimullah Medical College and Mitford Hospital (SSMC & MH) were tested for ESBL by E test ESBL method in the department of microbiology of Sir Salimullah medical college (SSMC) from March 2013 to August 2013.Out of 124 gram negative bacteria 69 (55.65%) were positive for ESBL. Among the ESBL producers, Esch.coli was the highest (46.38%) which was followed by Serratia spp (11.59%), Enterobacter spp (10.14%), Proteus spp, (8.70%), Acinetobacter spp.(7.24%) and Klebsiella spp.(5.79%). Out of 32 Esch.coli isolated from outpatient department, 10 (31.25%) were positive for ESBL. On the other hand out of 27 Esch. coli isolated from inpatient department, 22 (81.48%) were positive for ESBL. The difference was statistically significant (p<0.001).So the present study reveals that the distribution of ESBL producers is more among the hospitalized patients than the patients of the community.Bangladesh J Med Microbiol 2016; 10 (1): 8-12


2021 ◽  
Vol 16 (2) ◽  
pp. 139-147
Author(s):  
O. Olasehinde ◽  
A. Lamikanra

Background: Multidrug resistance remains a challenge in the treatment of Urinary Tract Infections (UTI) in Nigeria, a key factor being the occurrence of ESBL producers. Earlier reports have emphasized the occurrence of major ESBLs, little is known about the minor subtypes' occurrence in this regard.Objective: This study sought to evaluate the occurrence of major and minor ESβL producers among a cohort of uropathogens collected from a Nigerian Teaching Hospital using molecular techniques.Material and Methods: Cultures from 1000 UTI positive urine specimens were collected from the hospital laboratory between May 2015 and December 2017. All samples were subjected to standard isolation culturing techniques and identified. They were further tested for susceptibility to 8 antibiotics. Of these, gram-negative isolates with presumptive ESBL production were evaluated for confirmatory ESBL production using Chromogenic ESBL agar (Oxoid) and Agar Dilution tests. One hundred and twenty-five of them were evaluated for the presence of six ESBL genes (TEM, SHV, CTX-M 15, PER, GES, VEB) using Multiplex PCR/Agarose Gel Electrophoresis.Results: The results revealed that 40 out of 97 (41%) detected ESBL genes were of the ESBL minor category (VEB, PER, and GES). These ESBL producers were also observed to be resistant to at least five of the 8 antibiotics tested.Conclusion: More attention should be paid to the emergence minor ESBL producers among uropathogens in this environment as they represent a potential underlying influence on the observed treatment failure in the treatment of UTI.   


2021 ◽  
Author(s):  
Jade Chen ◽  
Su Su Soe San ◽  
Amelia Kung ◽  
Michael Tomasek ◽  
Dakai Liu ◽  
...  

AbstractIncreasing global travel and changes in the environment may increase the frequency of contact with a natural host carrying an infection, and therefore increase our chances of encountering microorganisms previously unknown to humans. During an emergency (man-made, natural disaster, or pandemic), the etiology of infection might be unknown at the time of patient treatment. The existing local or global Antimicrobial Stewardship Programs might not be fully prepared for emerging/re-emerging infectious disease outbreaks, especially if they are caused by an unknown organism, engineered bioterrorist attack, or rapidly evolving superbug. We demonstrate an antimicrobial efficacy profiling method that can be performed in hours directly from clinical urine specimens. The antimicrobial potency is determined by the microbial growth inhibition and compared to conventional antimicrobial susceptibility testing (AST) results. The oligonucleotide probe pairs on the sensor were designed to target gram-negative bacteria, specifically Enterobacterales and Pseudomonas aeruginosa. A total of 10 remnant clinical specimens from the CLIA labs of New York-Presbyterian Queens were tested, resulting in 100% categorical agreement with reference AST methods (Vitek and broth microdilution method). The combined categorical susceptibility reporting of 12 contrived urine specimens was 100% for ciprofloxacin, gentamicin, and meropenem over a range of microbial loads from 105 to 108 CFU/mL.


Sign in / Sign up

Export Citation Format

Share Document