scholarly journals TREND OF TEMPERATURE AND RELATIVE HUMIDITY IN EAST SIANG DISTRICT OF ARUNACHAL PRADESH, INDIA

2021 ◽  
Vol 21 (2) ◽  
Author(s):  
Avicha Tangjang ◽  
Amod Sharma

A study was conducted in the East Siang District of Arunachal Pradesh for the time period from 2000 to 2018 in order to study the temperature and relative humidity parameters of climate change in the study area. The study was based on secondary data collected from the regional meteorological centre wherein official data was collected for the years 2000 to 2018 for temperature and 2006 to 2018 for relative humidity. It was observed that maximum temperature in the study area exhibited an increasing trend during the study period. A monthly temperature study also showed that maximum temperature for the study area exhibited a significant increase during the months of February, July and August. The average annual Relative Humidity for East Siang during 2006-2018 was found to be 76.72 and 77.04 at 0830 hrs and 1730 hrs IST respectively. The monthly study of the Relative Humidity showed significant increase for the evening hours of 1730 hours IST during the months of April, and a significant decreasing trend for the months of September and October

2021 ◽  
Vol 9 (3) ◽  
pp. 266-275
Author(s):  
Neeraj Kumar ◽  

Navsari district of rainfall was shows highest increasing rainfall trend obtained September and negative January, July, October, November and December. The regression slope of the yearly time series is about 12.35 mm/36 years. Maximum temperature shows the highest increasing trend in month October, followed by December and August. The month highest decreasing trend was noticed that January, followed by February and July. The regression slope of the yearly time series is about 0.025°C/36 years. Minimum temperature highest values of the slope (0.109°C/36 year) with high value of regression Slope of determination (0.111°C), the annual Kendall’s tau statistic (0.492°C/36 year), the Kendall Score (310). All the month January to December shows increasing trend. The highest increasing trend found that November, followed by March and July, respectively. This finding shows that all the month shows increasing trend with the range between 0.308°C to 0.390°C. In case of RH-I the highest increasing trend shows September, followed by April and June. Similarly decreasing trend was found that January, followed by February and October, respectively. Relative humidity-II increasing trend was found only at the September month 0.084%, the increasing trend was detected in January to August and October to December, respectively. The strongest trend in the Bright sunshine hour’s decline of all month’s average daily sunshine hours was for the Navsari district. No significant trends were detected in all months and seasons for all weather elements. A similar trend was found in Sen’s slope and regression slope all the months for all the weather elements.


2014 ◽  
Vol 5 (3) ◽  
pp. 427-442 ◽  
Author(s):  
S. Shrestha ◽  
N. M. M. Thin ◽  
P. Deb

This study analyzes the impacts of climate change on irrigation water requirement (IWR) and yield for rainfed rice and irrigated paddy, respectively, at Ngamoeyeik Irrigation Project in Myanmar. Climate projections from two General Circulation Models, namely ECHAM5 and HadCM3 were derived for the 2020s, 2050s, and 2080s. The climate variables were downscaled to basin level by using the Statistical DownScaling Model. The AquaCrop model was used to simulate the yield and IWR under future climate. The analysis shows a decreasing trend in maximum temperature for three scenarios and three time windows considered; however, an increasing trend is observed for minimum temperature for all cases. The analysis on precipitation also suggests that rainfall in wet season is expected to vary largely from −29 to +21.9% relative to the baseline period. A higher variation is observed for the rainfall in dry season ranging from −42% for 2080s, and +96% in the case of 2020s. A decreasing trend of IWR is observed for irrigated paddy under the three scenarios indicating that small irrigation schemes are suitable to meet the requirements. An increasing trend in the yield of rainfed paddy was estimated under climate change demonstrating increased food security in the region.


2019 ◽  
Vol 11 (8) ◽  
pp. 900 ◽  
Author(s):  
Wei Zhao ◽  
Juelin He ◽  
Yanhong Wu ◽  
Donghong Xiong ◽  
Fengping Wen ◽  
...  

The scientific community has widely reported the impacts of climate change on the Central Himalaya. To qualify and quantify these effects, long-term land surface temperature observations in both the daytime and nighttime, acquired by the Moderate Resolution Imaging Spectroradiometer from 2000 to 2017, were used in this study to investigate the spatiotemporal variations and their changing mechanism. Two periodic parameters, the mean annual surface temperature (MAST) and the annual maximum temperature (MAXT), were derived based on an annual temperature cycle model to reduce the influences from the cloud cover and were used to analyze their trend during the period. The general thermal environment represented by the average MAST indicated a significant spatial distribution pattern along with the elevation gradient. Behind the clear differences in the daytime and nighttime temperatures at different physiographical regions, the trend test conducted with the Mann-Kendall (MK) method showed that most of the areas with significant changes showed an increasing trend, and the nighttime temperatures exhibited a more significant increasing trend than the daytime temperatures, for both the MAST and MAXT, according to the changing areas. The nighttime changing areas were more widely distributed (more than 28%) than the daytime changing areas (around 10%). The average change rates of the MAST and MAXT in the daytime are 0.102 °C/yr and 0.190 °C/yr, and they are generally faster than those in the nighttime (0.048 °C/yr and 0.091 °C/yr, respectively). The driving force analysis suggested that urban expansion, shifts in the courses of lowland rivers, and the retreat of both the snow and glacier cover presented strong effects on the local thermal environment, in addition to the climatic warming effect. Moreover, the strong topographic gradient greatly influenced the change rate and evidenced a significant elevation-dependent warming effect, especially for the nighttime LST. Generally, this study suggested that the nighttime temperature was more sensitive to climate change than the daytime temperature, and this general warming trend clearly observed in the central Himalayan region could have important influences on local geophysical, hydrological, and ecological processes.


2020 ◽  
Author(s):  
Maria Francisca Cardell ◽  
Arnau Amengual ◽  
Romualdo Romero

<p>Europe and particularly, the Mediterranean countries, are among the most visited tourist destinations worldwide, while it is also recognized as one of the most sensitive regions to climate change. Climate is a key resource and even a limiting factor for many types of tourism. Owing to climate change, modified patterns of atmospheric variables such as temperature, rainfall, relative humidity, hours of sunshine and wind speed will likely affect the suitability of the European destinations for certain outdoor leisure activities.</p><p>Perspectives on the future of second-generation climate indices for tourism (CIT) that depend on thermal, aesthetic and physical facets are derived using model projected daily atmospheric data and present climate “observations”. Specifically, daily series of 2-m maximum temperature, accumulated precipitation, 2-m relative humidity, mean cloud cover and 10-m wind speed from ERA-5 reanalysis are used to derive the present climate potential. For projections, the same daily variables have been obtained from a set of regional climate models (RCMs) included in the European CORDEX project, considering the rcp8.5 future emissions scenario. The adoption of a multi-model ensemble strategy allows quantifying the uncertainties arising from the model errors and the GCM-derived boundary conditions. To properly derive CITs at local scale, a quantile–quantile adjustment has been applied to the simulated regional scenarios. The method detects changes in the continuous CIT cumulative distribution functions (CDFs) between the recent past and successive time slices of the simulated climate and applies these changes, once calibrated, to the observed CDFs. </p><p>Assessments on the future climate potential for several types of tourist activities in Europe (i.e., sun, sea and sand (3S) tourism, cycling, cultural, football, golf, nautical and hiking) will be presented by applying suitable quantitative indicators of CIT evolutions adapted to regional contexts. It is expected that such kind of information will ultimately benefit the design of mitigation and adaptation strategies of the tourist sector.</p>


2012 ◽  
Vol 4 (5) ◽  
pp. 1056
Author(s):  
Raimundo Mainar Medeiros ◽  
Paulo Roberto Megna Francisco ◽  
Alexandra Lima Tavares

A partir das séries climatológicas normais de 1931-1960 e 1961-1990 dos elementos meteorológicos realizaram-se os cálculos do balanço hídrico climatológico, a classificação e as análises das indicações de mudanças climáticas no município de Sobral, estado do Ceará, utilizando O programa do BHnorm  elaborado em planilhas eletrônicas no pacote Excel por Sentelhas et al. (1999) e a metodologia de cálculo do Balanço Hídrico Climático de Thornthwaite & Mather (1955) e a classificação de Thornthwaite (1955), com o objetivo de contribuir para a sustentabilidade do homem no campo. Identificou-se que o clima da área de estudo classifica-se como Megatérmico semiárido e o tipo climático passou do tipo dw2w2d’ para dw2Dd’ com reduções da temperatura mínima e com oscilações de -0,1 a -0,8ºC e temperatura máxima com variações de -1,7 à 2,1ºC.  A umidade relativa do ar ocorreu flutuações positivas de 0,3 à 3,4%. A evapotranspiração potencial oscilou em -71,0 mm em relação aos períodos para o mês de outubro. Os índices de umidade; aridez e hídricos demonstraram valores de 28,6%, -23,9% e -47,5%, respectivamente. Observou-se que todas estas variabilidades ocorreram devido aos efeitos causados pelo homem na estrutura da cidade. Palavras-chave: Meteorologia. Balanço Hídrico Climático. Clima.  Classification and Analysis of Indications of Climate Change in the City of Sobral – Ceará  ABSTRACTFrom the series 1931-1960 climatological normal from 1961-1990 and meteorological elements were carried out calculations of the climatic water balance, classification and analysis of the indications of climate change in the city of Sobral, Ceará State, using the program BHnorm prepared in Excel spreadsheets in the package by Sentelhas et al. (1999) and the methodology of calculation of the Climatic Water Balance of Thornthwaite & Mather (1955) and the classification of Thornthwaite (1955), in order to contribute to the sustainability of the man in the field. It was found that the climate of the study area is classified as megathermal semiarid climate and the type has type dw2w2d 'to dw2Dd' with reductions in the minimum temperature fluctuations and from -0.1 to -0.8 º C and maximum temperature variations with 2.1 to -1.7 ° C. The relative humidity was positive fluctuations of 0.3 to 3.4%. The potential evapotranspiration fluctuated -71.0 mm for the periods for the month of October. The contents of moisture, drought and water showed values ​​of 28.6% -23.9% and -47.5%, respectively. It was observed that all these effects occurred due to variability caused by man in the structure of the city.  Keywords: Meteorology. Climatic Water Balance. Climate.


Agro Ekonomi ◽  
2016 ◽  
Vol 27 (2) ◽  
pp. 183 ◽  
Author(s):  
Yanti Nurhayanti ◽  
Moko Nugroho

The occurrence of climate change disrupts the productivity of paddy in Indonesia. Disruption of the paddy’s production has an impact on the availability of foodstuffs, considering paddy as staple food Indonesia society. This study aims to analyze the impact of climate change on productivity of paddy in the central acreage of paddy in period 1974-2015 by using four different climate variables. The data used are secondary data collected from Agency of Central for Statistics (BPS), Ministry of Agriculture, and National Oceanic and Atmospheric Administration (NOAA). Estimation method using data panels with Random Effect models (REM). The results showed the productivity of paddy in Indonesia are more sensitive to changes in rainfall and maximum temperature (Tmax) compared to the average temperature (Tave) and the minimum temperature (Tmin). Increased rainfall and Tmax positively impact the productivity of paddy until a specific turning point, then after that point will give the opposite impact. As for the turning point for the precipitation of 10,177 Inc./year, while Tmax on 31,35 °C. Simple simulation results demonstrate the increase in rainfall in the upper turning point of 1 % will reduce the productivity of paddy amounted 0,00796 % ceteris peribus. While the maximum temperature rise above the turning point of 1 % will reduce the productivity of paddy as much as 0,09039% ceteris peribus.


2019 ◽  
Vol 6 ◽  
pp. 11-20
Author(s):  
Payaswini Ghimire

Climate change is now a global issue and its impact on different sectors like water sources, biodiversity, health, livestock, and livelihood are already seen. Climate change is accelerating due to the emission of greenhouse gases produced by anthropogenic activities. Though Nepal’s contribution to greenhouse gases is negligible compared to developed countries, its risk to climate change is very high. Thus, it extremely important to understand the current scenario of climate change of Nepal. Hence, this article reviews and compares the published articles which studies the pattern and trend of climate change of the time period of at least 30 years. Most of the article shows increasing trend of temperature. According to the recent study, maximum temperature was found to be increasing by 0.05°C/year and minimum temperature was found to increase by 0.03°C/year. Though, the trend of precipitation in Nepal is not clear like temperature most of the studies have concluded increasing in monsoon precipitation in coming years.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 973
Author(s):  
Azfar Hussain ◽  
Jianhua Cao ◽  
Ishtiaq Hussain ◽  
Saira Begum ◽  
Mobeen Akhtar ◽  
...  

Having an extreme topography and heterogeneous climate, the Upper Indus Basin (UIB) is more likely to be affected by climate change and it is a crucial area for climatological studies. Based on the monthly minimum temperature (Tmin), maximum temperature (Tmax) and precipitation from nine meteorological stations, the spatiotemporal variability of temperature and precipitation were analyzed on monthly, seasonal, and annual scales. Results show a widespread significant increasing trend of 0.14 °C/decade for Tmax, but a significant decreasing trend of −0.08 °C/decade for Tmin annually, during 1955–2016 for the UIB. Seasonally, warming in Tmax is stronger in winter and spring, while the cooling in Tmin is greater in summer and autumn. Results of seasonal Tmax indicate increasing trends in winter, spring and autumn at rates of 0.38, 0.35 and 0.05 °C/decade, respectively, while decreasing in summer with −0.14 °C/decade. Moreover, seasonal Tmin results indicate increasing trends in winter and spring at rates of 0.09 and 0.08 °C/decade, respectively, while decreasing significantly in summer and autumn at rates of −0.21 and −0.22 °C/decade respectively for the whole the UIB. Precipitation exhibits an increasing trend of 2.74 mm/decade annually, while, increasing in winter, summer and autumn at rates of 1.18, 2.06 and 0.62 mm/decade respectively. The warming in Tmax and an increase in precipitation have been more distinct since the mid-1990s, while the cooling in Tmin is observed in the UIB since the mid-1980s. Warming in the middle and higher altitude (1500–2800 m and >2800 m) are much stronger, and the increase is more obvious in regions with elevation >2800 m. The wavelet analysis illustrated sporadic inter-annual covariance of seasonal Tmax, Tmin and precipitation with ENSO, NAO, IOD and PDO in the UIB. The periodicities were usually constant over short timescales and discontinuous over longer timescales. This study offers a better understanding of the local climate characteristics and provides a scientific basis for government policymakers.


Author(s):  
N. W. M. G. S. Navaratne ◽  
W. A. D. P. Wanigasundera ◽  
P. C. B. Alahakoon

Climate change impacts such as rainfall variability, rise in ambient temperature, extreme dry spells and excessive wet periods cause low productivity and quality of tea. Ratnapura District in Sri Lanka, having the largest number of tea smallholders, is highly vulnerable to natural disasters and other negative impacts of climate change. This study was conducted to assess the status of climate change using long term meteorological data, to determine the perception of tea smallholders on short term changes in the climate and to assess the level of adaptation of climate-smart technologies by tea smallholders. Four Divisional Secretariat Divisions were selected for the study. Using multistage sampling, a hundred farmers were selected for the social survey. Meteorological data for 42 years was collected from the Department of Agriculture Sri Lanka. Both descriptive and inferential statistics were used in the analysis. Results showed that there was a significant (p<.05) increasing trend in daily maximum temperature. A slightly increasing trend in consecutive wet days was also observed. The perception of the majority of smallholders about changes in daytime temperature, number of wet days and rainfall distribution was in line with actual changes. Further, the overall level of adaptation to climate-smart technologies was at a moderate level. Shade management practices were at a higher level while moisture conservation practices were at a lower level. It was pivotal to make people aware of the severity of the impacts of climate change on their livelihoods and introduce climate-smart technologies to manage the consequences of extreme weather events.


Author(s):  
Sohail Abbas ◽  
Safdar Ali Shirazi ◽  
Nausheen Mazhar ◽  
Kashif Mahmood ◽  
Ashfak Ahmad Khan

Identifying the temperature change at a regional level is one of the essential parameters to determine the intensity of climate change. The current investigation provides an examination of changing trends of temperature in the Punjab province from 1970 to 2019. Sen's slope estimator method is applied to monthly data of mean temperature (Tmean), maximum temperature (Tmax), and minimum temperature (Tmin) to calculate the rate of temperature change. Statistical methods were used to find out the level of significance in terms of negative or positive trends to examine the variability among various weather observatories. Moreover, predicted values have also been observed for a detailed analysis of temperature variability and trends. Significant and pronounced changes in the mean temperature (T mean) are distinguished all over the Punjab regions with an increasing trend from North to South Punjab. In the case of maximum temperature (Tmax), a faster rate of rising in temperature is observed over the Southern and Western regions of Punjab. In contrast, the minimum temperature (Tmin) shows an increasing trend in Central Punjab. The findings provide detailed insight to policymakers for the planning of mitigating efforts and adaptation strategies in response to climate change.


Sign in / Sign up

Export Citation Format

Share Document