scholarly journals Quantitative analysis of proanthocyanidins (tannins) from cardinal grape (Vitis vinifera) skin and seed by RP-HPLC

Author(s):  
Farida Benmeziane ◽  
Yves Cadot

Background: Grape phenolics are structurally diverse, from simple molecules to oligomers and polymers usually designated “tannins or proanthocyanidins (PAs)” referring to their ability to interact with proteins. Those compounds have been attributed to a great number of biological activities beneficial for human health as they act as antioxidant, anti-inflammatory, antitumor, etc. Aim: The objective of the current study was to quantify and to identify the PAs and determine the mean degree of polymerization (DPm) in seeds and skins of the grape cardinal variety cultivated in El-Tarf region, Algeria. Methods and Material: To determine PAs, Reverse Phase High-Performance Liquid Chromatography with Diode Array Detection (RP-HPLC-DAD) has been utilized. The DPm was determined after the reaction of thiolysis in the presence of toluene-α-thiol reagent. Results: HPLC-DAD analysis of Cardinal skin and seed extract showed that epicatechin gallate (ECG) and epigallocatechin (EGC) were the major constitutive units of grape skin tannins and the mean degree of polymerization (DPm) was lower for seed PAs than for skin. Conclusions: This study showed the richness of skin and grape seeds in polyphenolic compounds (PAs). Therefore, these parts of grape can be used as a potential source of bioactive molecules to promote the health of populations in this region in Algeria. Keywords: Grape, Skin, Seed, Proanthocyanidins, RP-HPLC-DAD.

2021 ◽  
Vol 12 ◽  
Author(s):  
Qianqian Huang ◽  
Tianming Hu ◽  
Zhongjun Xu ◽  
Long Jin ◽  
Tim A. McAllister ◽  
...  

This study aimed to determine the concentration and composition of condensed tannins (CT) in different tissues of purple prairie clover (PPC; Dalea purpurea Vent.) at different maturities and to determine their protein-precipitating capacity. The compositions of CT were elucidated after thiolysis with benzyl mercaptan followed by high-performance liquid-chromatography (HPLC) and 1H–13C heteronuclear single quantum coherence (HSQC) NMR spectroscopy. The results indicated that PPC flowering heads contained the highest CT concentration. Purple prairie clover CT consisted mainly of epicatechin (EC) and epigallocatechin (EGC) subunits. CT in the leaves were composed of more EC and less EGC than CT in stems and flowering heads at both the early flowering (EF) and late flowering (LF) head stages. The mean degree of polymerization was the highest for CT in stems and increased with maturity. CT isolated from PPC leaves at the early flowering head stage exhibited the greatest biological activity in terms of protein precipitation. Overall, the CT in PPC were predominantly procyanidins and the concentration and composition varied among the plant tissues and with maturity.


Author(s):  
O. S. S. Chandana ◽  
D. Sathis Kumar ◽  
R. Ravichandra Babu

Objective: Our main objective is to develop an accurate and precise RP-HPLC method for the determination of Eprosartan Mesylate and its impurities. Methods: A Develosil ODS UG-5; (150 × 4.6) mm; 5 µm column was used for the Separation of drugs by a mobile phase consisting of Buffer and Acetonitrile mixture in the gradient proportion. The flow rate maintained was 0.8 ml/min and the wavelength used for detection was 235 nm.Results: The linearity was observed in the range of 0.025-50µg/ml of spiked impurities in Eprosartan Mesylate, impurity 1 and impurity 2 with a correlation coefficient of 0.99927, 0.99910 and 0.99934 respectively. The mean percentage recoveries for LOQ, 50%, 80%, 100%, 150% and 200% accuracy were found to be 101.5±1.51, 107.0±1.7, 104.6±0.4, 102.8±0.36, 101.7±0.26 and 101.3±0.15 respectively for impurities in Eprosartan Mesylate, impurity 1 and impurity 2. Linearity, accuracy, precision and robustness parameters for the suggested method were estimated for validation.Conclusion: The developed method is uncomplicated, accurate, sensitive and precise for the determination of related substances in the Eprosartan Mesylate. The satisfying % recoveries and low % RSD Values confirmed the suitability of the developed method for the usual analysis of Eprosartan mesylate in pharmaceuticals.


Plants ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 118 ◽  
Author(s):  
Maja Bensa ◽  
Vesna Glavnik ◽  
Irena Vovk

This is the first report on identification of all B-type proanthocyanidins from monomers to decamers (monomers—flavan-3-ols, dimers, trimers, tetramers, pentamers, hexamers, heptamers, octamers, nonamers, and decamers) and some of their gallates in leaves of Japanese knotweed (Fallopia japonica Houtt.), giant knotweed (Fallopia sachalinensis F. Schmidt) and Bohemian knotweed (Fallopia × bohemica (Chrtek & Chrtkova) J.P. Bailey). Flavan-3-ols and proanthocyanidins were investigated using high performance thin-layer chromatography (HPTLC) coupled to densitometry, image analysis, and mass spectrometry (HPTLC–MS/MS). All species contained (−)-epicatechin and procyanidin B2, while (+)-catechin was only detected in Bohemian and giant knotweed. (−)-Epicatechin gallate, procyanidin B1 and procyanidin C1 was only confirmed in giant knotweed. Leaves of all three knotweeds have the same chemical profiles of proanthocyanidins with respect to the degree of polymerization but differ with respect to gallates. Therefore, chromatographic fingerprint profiles of proanthocyanidins enabled differentiation among leaves of studied knotweeds, and between Japanese knotweed leaves and rhizomes. Leaves of all three species proved to be a rich source of proanthocyanidins (based on the total peak areas), with the highest content in giant and the lowest in Japanese knotweed. The contents of monomers in Japanese, Bohemian and giant knotweed were 0.84 kg/t of dry weight (DW), 1.39 kg/t DW, 2.36 kg/t, respectively, while the contents of dimers were 0.99 kg/t DW, 1.40 kg/t, 2.06 kg/t, respectively. Giant knotweed leaves showed the highest variety of gallates (dimer gallates, dimer digallates, trimer gallates, tetramer gallates, pentamer gallates, and hexamer gallates), while only monomer gallates and dimer gallates were confirmed in Japanese knotweed and monomer gallates, dimer gallates, and dimer digallates were detected in leaves of Bohemian knotweed. The profile of the Bohemian knotweed clearly showed the traits inherited from Japanese and giant knotweed from which it originated.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Dina Cheaib ◽  
Nada El Darra ◽  
Hiba N. Rajha ◽  
Richard G. Maroun ◽  
Nicolas Louka

This work aims to study the impact of solvent mixture (between 0 and 50% ethanol/water mixture) and temperature (between 25°C and 75°C) levels on the solid-liquid extraction of phenolic compounds (quantity and bioactivity) from apricot pomace. Results show that the mean augmentation of 1% ethanol in the range [0–12%] enhances by three times the extraction of polyphenols compared to the same augmentation in the range [0–50%]. Similarly, the mean augmentation of 1°Celcius in the range [0–25°Celcius] enhances by two times the extraction of polyphenols compared to the same augmentation in the range [0–75°Celcius]. Moreover, 1% of ethanol exhibited a greater impact on the phenolic compound extraction than 1°Celsius. The response surface methodology showed that the optimal extraction condition was reached with 50% ethanol/water at 75°C giving a total phenolic content (TPC) of 9.8 mg GAE/g DM, a flavonoids content (FC) of 8.9 mg CE/g DM, a tannin content (TC) of 4.72 mg/L, and an antiradical activity (AA) of 44%. High-performance liquid chromatography (HPLC) analysis showed that polyphenols were influenced by the selectivity of the solvent as well as the properties of each phenolic compound. Apricot pomace extracts could therefore be used as natural bioactive molecules for many industrial applications.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 402
Author(s):  
Maja Bensa ◽  
Vesna Glavnik ◽  
Irena Vovk

Flavan-3-ols and proanthocyanidins of invasive alien plants Japanese knotweed (Fallopia japonica Houtt.), giant knotweed (Fallopia sachalinensis F. Schmidt) and Bohemian knotweed (Fallopia × bohemica (Chrtek & Chrtkova) J.P. Bailey) were investigated using high performance thin-layer chromatography (HPTLC) coupled to densitometry, image analysis and mass spectrometry (HPTLC–MS/MS). (+)-Catechin, (−)-epicatechin, (−)-epicatechin gallate and procyanidin B2 were found in rhizomes of these three species, and for the first time in Bohemian knotweed. (−)-Epicatechin gallate, procyanidin B1, procyanidin B2 and procyanidin C1 were found in giant knotweed rhizomes for the first time. Rhizomes of Bohemian and giant knotweed have the same chemical profiles of proanthocyanidins with respect to the degree of polymerization and with respect to gallates. Japanese and Bohemian knotweed have equal chromatographic fingerprint profiles with the additional peak not present in giant knotweed. Within the individual species giant knotweed rhizomes and leaves have the most similar fingerprints, while the fingerprints of Japanese and Bohemian knotweed rhizomes have additional peaks not found in leaves. Rhizomes of all three species proved to be a rich source of proanthocyanidins, with the highest content in Japanese and the lowest in Bohemian knotweed (based on the total peak areas). The contents of monomers in Japanese, Bohemian and giant knotweed rhizomes were 2.99 kg/t of dry mass (DM), 1.52 kg/t DM, 2.36 kg/t DM, respectively, while the contents of dimers were 2.81 kg/t DM, 1.09 kg/t DM, 2.17 kg/t DM, respectively. All B-type proanthocyanidins from monomers to decamers (monomers—flavan-3-ols, dimers, trimers, tetramers, pentamers, hexamers, heptamers, octamers, nonamers and decamers) and some of their gallates (monomer gallates, dimer gallates, dimer digallates, trimer gallates, tetramer gallates, pentamer gallates and hexamer gallates) were identified in rhizomes of Bohemian knotweed and giant knotweed. Pentamer gallates, hexamers, hexamer gallates, nonamers and decamers were identified for the first time in this study in Bohemian and giant knotweed rhizomes.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
K. P. Rini Vijayan ◽  
A. V. Raghu

Abstract Background The plants belonging to the genus Embelia, a significant tropical genus with many biological activities, are benefiting because of their robust medicinal properties. Embelin is one of the principal bioactive molecules responsible for the medicinal properties of the genus Embelia. The quantification of the embelin compound among different species in this genus has not yet been investigated, so still uncertain which species and which part should be accepted. The present study was intended to establish a speedy and precise high-performance thin-layer chromatographic (HPTLC) method for quantitative study of embelin in various plant parts of Embelia ribes, Embelia tsjeriam-cottam, Embelia basaal, Embelia adnata, and Embelia gardneriana. Result This research confirmed the method as per the International Conference on Harmonization (ICH) guidelines. We achieved separation on silica gel 60 F254 HPTLC plates using propanol: butanol: ammonia (7:3:7 v/v/v) as a mobile phase. Densitometry scanning performed for detection and quantification at 254 nm and 366 nm. Among the species investigated, the highest amount of embelin was found in E. ribes fruits. Conclusion Embelia ribes fruits are the best source of embelin. Embelin was first described in the endemic species, such as E. adnata and E. gardneriana. The method illustrated in this research may be applied for quantification of embelin and fingerprint analysis of other species within Embelia genus or described genera and chemo taxonomic studies of this genus.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jie Zhang ◽  
Dan Liu ◽  
Aoke Wang ◽  
Li Cheng ◽  
Wenya Wang ◽  
...  

Abstract Background Sixty five percent of procyanidins in grape seeds is polymeric procyanidins (PPC), and they could not be assimilated directly by human. To enhance procyanidin assimilation, steam explosion treatment (SE) was used to facilitate the preparation of oligomeric procyanidins (OPC) from grape seeds. Results The results indicate that SE treatment made grape seeds loose and porous, and decreased the mean degree of polymerization (mDP) of procyanidins. The procyanidins content and total phenolic content (TPC) were decreased with the increase of SE severity, while the amount of catechin (CA), epicatechin (EC) and epicatechin-3-O-gallate (ECG) were increased, resulting in significant increase of antioxidant activity. Conclusions Although SE treatment could depolymerize PPC and produce CA/EC/ECG with high yield, it caused the yield loss of total procyanidins. SE treatment is a potential effective method to prepare procyanidins with low degree of polymerization and high antioxidant activity. However, it still needs to study further how to balance the yield of total procyanidins and catechin monomers (CA/EC/ECG).


2016 ◽  
Vol 77 (3) ◽  
pp. 632-641 ◽  
Author(s):  
C. G. Pereira ◽  
L. Custódio ◽  
M. J. Rodrigues ◽  
N. R. Neng ◽  
J. M. F. Nogueira ◽  
...  

Abstract The halophyte species Plantago coronopus has several described ethnomedicinal uses, but few reported biological activities. This work carried out for the first time a comparative analysis of P. coronopus organs in terms of phenolic composition and antioxidant activity of organic and water extracts from roots, leaves and flowers. The leaves contents in selected nutrients, namely amino acids and minerals, are also described. Roots (ethyl acetate and methanol extracts) had the highest radical scavenging activity (RSA) towards 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals, while leaves (hexane extract) had higher RSA on nitric oxide radical and iron chelating ability. High performance liquid chromatography (HPLC) analysis identified eighteen phenolics from which salicylic acid and epicatechin are here firstly described in Plantago species. Leaves had mineral levels similar to those of most vegetables, proving to be a good source for elements like calcium, sodium, iron and magnesium, and also for several of the essential amino acids justifying it use as food. Our results, especially those regarding the phenolics composition, can explain the main traditional uses given to this plantain and, altogether, emphasize the potential of P. coronopus as a source of bioactive molecules particularly useful for the prevention of oxidative stress-related diseases.


Antioxidants ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 292 ◽  
Author(s):  
Katalin Szabo ◽  
Zorița Diaconeasa ◽  
Adriana-Florinela Cătoi ◽  
Dan Cristian Vodnar

Global tomato production is currently around 180 million tons, of which more than a quarter undergoes processing. The removed peels, seeds, and vascular tissues usually end up in landfills, creating environmental pollution. In order to highlight the alternative use of these vegetal wastes, our study investigated 10 tomato varieties in terms of carotenoids content, phenolic composition, and their related antioxidant and antimicrobial activities. Tomato peels extracts were screened by high performance liquid chromatography with diode-array detection (HPLC/DAD) for qualitative and quantitative analyses. The extracts were tested against six bacterial strains to determine their antimicrobial effect; the 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay was applied to estimate their antioxidant capacity. Total carotenoids content was significantly higher in Ţărănești roz, a local variety (5.31 ± 0.12 mg/100 g DW), while Mirsini, a commercial hybrid, presented significantly higher total phenolic content (155 ± 2 mg/100 g DW) compared to the mean value of all analyzed samples. The methanolic extracts of tomato peels presented acceptable antimicrobial activity against Staphilococcus aureus and Bacillus subtilis, and the mean antioxidant activity was 201 ± 44 µmol Trolox/100 g DW tomato peels. Considering that tomato peels have lycopene, β-carotene, lutein, and different phenolic compounds in their composition, tomato industrial by-products could represent a source of natural bioactive molecules with applicability in nutraceuticals and food industry.


2017 ◽  
Vol 12 (3) ◽  
pp. 1934578X1701200
Author(s):  
Leonardo Mendes De Souza Mesquita ◽  
Claudia Quintino Da Rocha ◽  
Luiz Henrique Lima Affonso ◽  
Antonietta Cerulli ◽  
Sonia Piacente ◽  
...  

In this study we isolated two polyphenolic acids of m/z 639, called catharinol A and catharinol B, from Plantago catharinea L. (Plantaginaceae) leaves. Although presenting very similar structures, catharinol A showed higher antioxidant activity when compared with gallic acid and quercetin standards. These compounds are position isomers and present in their chemical structure the rare sugar D-allose. Molecules with similar constitution are known to have important biological activities such as antitumor and immunosuppressive. These compounds were isolated by high-performance liquid chromatography (HPLC) and characterized by mass spectrometry (FIA-ESI-IT-MS/MS) and nuclear magnetic resonance (NMR). This work is the first study on the chemical composition of P. catharinea and encourages the production of Plantago species as a good source of bioactive molecules.


Sign in / Sign up

Export Citation Format

Share Document