In vitro gas fermentation kinetics of compounded ration containing graded levels of biodegraded corncob

2020 ◽  
Vol 47 (2) ◽  
pp. 224-234
Author(s):  
O.Y. Adedeji ◽  
A. A. Saka

Cob regarded as a waste product, constituting source of environmental pollution could be utilized as an energy source in feed formulation if properly processed and harnessed through fungal degradation. Hence, this study was designed to evaluate the nutritive value of biodegraded corncob meal based diet using in vitro gas production technique. Aspergillus niger was isolated and sub-cultured to obtain a pure culture. Degraded corn cob meals(DCCM) of four dietary treatments were prepared to include: T (0% DCCM which served as 1 the control), T (15% DCCM), T (30% DCCM) and T (45% DCCM). Each diet sample 2 3 4 (200mg) was incubated in buffered rumen liquor for 48 hours and gas volume was estimated using established in vitro gas production models. Amount of gas volume produced was determined every 3 hours for 48 hours of incubation in buffered rumen fluid. After 48 hours ofincubation, methane gas produced was estimated and determined in triplicates. The proximate composition of Aspergillus niger biodegraded corn cob indicated that Aspergillus niger improved the nutritive value of the corn cob. Untreated corn cob meal was lower in nutritive values when compared with treated corncob meal with crude protein, crude fibre and ash values ranging from 6.88 to 9.78%, 32.68 to 26.37% and 2.87 to 2.88% respectively.The proximate composition of the dietary treatments showed that the crude protein varied from (11.67-12.67%), crude fibre (10.94-21.56%), ether extract (2.12-4.88%), ash (6.48- 9.44%) and nitrogen free extract (58.17-62.99%). Results obtained for volume of gas (35.960-72.770mL/200mgDM) produced in time “t” denoted by (b) were significantly different (P<0.05) across the dietary treatments. However, rate of gas production (0.0297- 0.0425mL/hr) and time between incubation and gas production (2.083-2.683hr) were not significantly different (P>0.05) across the dietary treatments. Cumulative gas volumeproduction at 24 hours were significantly (P<0.05) influenced by different inclusion levels of DCCM with values obtained ranging from T (15.33 ml/gDM) to T (35.33 ml/gDM). There 4 3 were significant differences (P<0.05) across the dietary treatments. The post estimated parameters ranging from metabolisable energy (4.96-7.74MJ/Kg DM), organic matter digestibility (37.98-58.03%), short chain fatty acids (0.31-0.78μmol), Methane estimate (3-8  ml/200mgDM) and Carbon dioxide estimate (10-30 ml/200mgDM). It can be concluded that 30% DCCM based diet had the potential of meeting the nutritional needs as smallruminant livestock feeds, if properly biodegraded and incorporated into feeds.

2020 ◽  
Vol 36 (2) ◽  
pp. 313-324
Author(s):  
O. J. Babayemi ◽  
F. K. Otukoya ◽  
F. O. Familade ◽  
M. O. Daodu

Corn-straw (CS) and corn-cob (CC) were treated with bovine liquor (BL) to enhance their nutritive values. Eight preparations consisting of CC, CS, CC + BL, CS + BL, CC + urea, CS+ urea, CC+ BL+urea and CS + BL + urea were made to ferment for five days under anaerobic condition. The final products were assessed for their chemical composition, in vitro gas production and feed preference by sheep and goats. Crude protein contents in CC and CS significantly (P <0.05) increased from 3.5% and 2.7% to 8.6% and 3.4% respectively without urea but addition of urea increased the contents to 14.6% and 6.8% respectively. Crude fibre, neutral detergent fibre, acid detergent fibre, acid detergent lignin, cellulose and hemicellulose of the treated CS and CC were significantly (P < 0.05) reduced. Similar trends were observed for gas production characteristics as the potentially degradable fraction ‘b’ and the potential degradability ‘a + b’ of treated straw and cobs were better (P < 0.05) than the untreated. The rate ‘c’ of gas production was slower for the treated than the untreated CC and CS. Both sheep and goats separately preferred the treated CC and CS to the untreated after three days and subsequent days of consumption. Since the bovine liquor showed the tendency of enhancing the nutrient contents of corn-cobs and corn-straw and that small ruminant preferred the treated materials than the untreated, sheep and goats can be sustained during the dry season.


Author(s):  
Behlül Sevim ◽  
Tugay Ayaşan ◽  
İsmail Ülger ◽  
Şerife Ergül ◽  
Sait Aykanat ◽  
...  

This study was conducted to determine the nutritive value of malt barley varieties using in vitro gas production technique and in vitro methane production. Atılır, Durusu and Fırat were used as three malt barley varieties. As a result of this study, between the varieties in terms of dry matter (DM), crude ash (CA), crude protein (CP), crude fat (CF), neutral detergent fiber (NDF) and hemicellulose (HEM) were found significantly important but differences between the varieties in terms of ADF were not found significant. The gas production rate of malt barley varieties ranged from 64.00 to 72.50 ml/200 mg DM. The metabolisable energy (ME) and net energy lactation (NEL) contents of malt barley varieties ranged from 11.75 to 12.86 MJ/kg DM and 7.16 to 7.98 MJ/kg DM respectively. The highest methane (CH4) content was obtained from the variety of Fırat with a value of 13.34 ml/200 mg DM, whereas the lowest value was obtained from the Atılır variety with a value of 12.16 ml/200 mg DM.


2021 ◽  
Vol 43 ◽  
pp. e52129
Author(s):  
Tahereh Mohammadabadi ◽  
Morteza Chaji ◽  
Ehsan Direkvandi ◽  
Othman Alqaisi

. This study was performed to investigate the effect of replacing alfalfa hay by L. leucocephala leaves in proportions of 25, 50 and 100% on in vitro gas production (GP) parameter, digestibility and in situ degradability in buffalo. Results showed that the volume of GP at 2 to 12 hours after incubation was significantly affected by replacing alfalfa hay with L. leucocephala leaves. In vitro digestibility of organic matter (OMD) differed significantly between treatment as it declined by increasing the alfalfa hay substitution rate from 25 to 100%. The microbial crude protein (MCP) differed significantly between treatments and was the greatest of 589 and 599 mg g-1 of dry matter (DM) when L. leucocephala leaves replaced alfalfa hay at 25 and 50%. The in vitro digestibility of DM (IVDMD) increased significantly at 50% L. leucocephala replacement rate. Moreover, substituting alfalfa hay by L. leucocephala had a significant effect on the in situ degradability parameters. The insoluble but potentially degradable fraction (B) and potential of degradability (A+B) significantly increased for treatment contain 50% L. leucocephala leaves. The effective degradability (ED) was significantly different between dietary treatments and was the greatest when alfalfa hay was replaced by 25 and 50% L. leucocephala. In conclusion, L. leucocephala leaves can substitute 25 to 50% of dietary alfalfa hay in buffalo rations without effect on rumen efficiency.


2000 ◽  
Vol 9 (2) ◽  
pp. 105-120 ◽  
Author(s):  
P. HUHTANEN ◽  
S. AHVENJÄRVI ◽  
T. HEIKKILÄ

Third harvest samples from a pot experiment were analysed to study the effects of sodium (Na) (0, 200 and 400 mg dm-3 of soil in a single application as Na2SO4 . 10H2O) and potassium (K) application (0, 100 and 200 mg dm-3 applied at each harvest as KCl) on the nutritive value of timothy grown on three different soil types (clay, loam and organogenic soil). The effects of fertilization on concentrations of crude protein, neutral detergent fibre (NDF) and non-structural carbohydrates, although statistically significant, were relatively minor in absolute terms. Na applications increased and K applications decreased sulphur and phosphorus concentrations, the magnitude of which was dependent on soil type. The increase in sulphur concentration can be attributed to sulphate in Na-fertilizer. The effects of fertilizers on in vitro organic matter digestibility and the potential extent of dry matter (DM) and NDF digestibility were small. Digestion kinetic parameters estimated from fermentative gas production measured using a fully automated system were used in a rumen simulation model to estimate digestibility. Total gas volume and the rate of gas production from the rapidly digestible fraction were negatively correlated with timothy S and N concentrations. Na application had no effect, but K application increased true rumen DM digestibility, the effect being most profound on organogenic soil. The results suggest that Na application does not elicit substantial positive effects on the nutritive value of timothy which has often been reported for perennial ryegrass, but K application can improve the nutritive value of timothy grown on K deficient soil.;


Animals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2212
Author(s):  
Mónica Gandarillas ◽  
Juan Pablo Keim ◽  
Elisa María Gapp

Background: Horses are hindgut fermenters, and it is therefore important to determine the postgastric nutritive value of their feedstuffs and diets. Moreover, it has been demonstrated in other animal species that the fermentation of diets results in different values than those expected from pure ingredients. Therefore, the general objective of this work is to evaluate the gas production (GP) and volatile fatty acid (VFA) concentration, as well as the associative effects, of mixtures of different forages and concentrated foods, which are representative of the traditional diets of high-performance horses. Methods: An in vitro gas production experiment was conducted to assess the fermentation of two forages and three concentrates that are typical in horse diets. The combination of 70% of forage and 30% concentrates was also assessed to determine potential associative effects. Results: Concentrates and grains produced higher GP and VFA than forages when evaluated alone. When experimental diets were incubated, GP parameters and VFA concentrations of forage–concentrate mixtures had unexpected differences from the values expected from the fermentation of pure ingredients, suggesting the occurrence of associative effects. Conclusions: Our results indicate that there is a need to evaluate the fermentation of diets, rather than predicting from the values of pure ingredients.


1997 ◽  
Vol 64 (1) ◽  
pp. 71-75 ◽  
Author(s):  
M. Blümmel ◽  
P. Bullerdieck

AbstractThe need to complement in vitro gas production measurements with residue determination is demonstrated by the recalculation and reassessment of published data on in vitro gas production, in sacco degradabilities and voluntary dry matter intake (DMI). The in sacco degradability — gas volume ratio was determined at 24 and 48 h of incubation, termed partitioning factor (PF) and combined with rate and extent parameters of in sacco degradability and in vitro gas production to predict DMI. In vitro gas production and in sacco degradability characteristics (a + b) and c as described by the equation y = a + b(1−ect) explained 0·373 and 0·668 respectively of the variation in DMI of 19 legume and grass hays. The complementation of gas production parameters by the PF24 increased the R2 value to 0·744 with PF24 accounting for 0·407 of the variation in DMI, the rate of gas production (c) for 0·218 and the extent of gas production (a + b) for 0·119 of the variation in DMI. As a single parameter, PF48 showed the highest correlation (R2 = 0·597) with DMI but the combination of PF4S with rate and extent of in sacco or in vitro gas production measurements did not improve the correlation further, probably due to an intercorrelation between rates of fermentation and PF4S. Hays which were degraded at faster rates had higher PF values indicating proportionally higher microbial yield and lower short-chain fatty acid production per unit substrate degraded. Generally, hays with high in sacco degradabilities but proportionally low gas production i.e. hays with high PF values showed higher DMI.


1998 ◽  
Vol 1998 ◽  
pp. 69-69
Author(s):  
S. Fakhri ◽  
A. R. Moss ◽  
D.I. Givens ◽  
E. Owen

The gas production (GP) technique has previously been used to estimate the gas volume (fermentable energy (FE)) of compound feed ingredients for ruminants (Newbold et al., 1996). It was shown that the FE content of feed mixtures was represented by the combination of the total gas from the incubation of the individual feeds. However this additivity might not be consistent throughout the incubation period. The objectives were to test whether 1. other GP parameters give better estimates of FE for simple mixtures and are they additive; 2. whether organic matter apparently degraded in the rumen (OMADR) explain differences in GP; and 3. to find out if there are any other better measures than OMADR for estimating FE.


2021 ◽  
Vol 44 (3) ◽  
pp. 371-377
Author(s):  
O. O. Falola ◽  
O. O. Olufayo

The inclusion of multipurpose trees with grass such as Panicum maximum in the diet of ruminants may enhance productivity. Thus, the study was carried out to determine the proximate composition, in vitro gas production characteristics and parameters of Leucaena leucocephala and Panicum maximum at varying proportions. Five diets were formulated such that Panicum maximum was substituted with Leucaena leucocephala at different ratio: T1 (100% Panicum maximum), T2 (100% Leuceana leucocephala), T3 (50% P. maximum + 50% L. leucocephala), T4 (75% P. maximum + 25% L .leucocephala) and T5 (25% P. maximum + 75% L. leucocephala). Data were subjected to analysis of variance. Values obtained for dry matter (34.43 –35.95g/100g) decreased with the increased inclusion of Leuceana leucocephala in the diets. The crude fiber values (14.33 – 30.75g/100g) also followed the same trend while crude protein (CP) content (10.70 – 26.78g/100g) increased the inclusion of Leucaena leucocephala in the diets. There were significant (P < 0.05) differences in the treatment means of organic matter digestibility (OMD 31.93 – 37.07%), Metabolisable energy (ME 3.62 – 4.33 MJ/kgDM), short chain fatty acids (SCFA 0.04 – 0.16mL) and methane (ME 1.00 – 2.50 mL).The values (2.00 – 4.67 ml/200mgDM) obtained for immediate soluble 'a' was significantly (P < 0.05) different among the treatments. The extent of gas production (a+b) ranged from 2.00 – 4.67 mL/200mgDM, T1 (100% Panicum maximum) recorded the lowest while highest was observed in T2 (100% Leucaena leucocephala). The insoluble but degradable fraction 'b'ranged from 2.67 – 5.67ml/200mgDM, while the rate of gas production 'c' ranged from 0.04 – 0.14ml/hr. In conclusion, the enhanced values of crude protein, OMD, SCFA, and ME in the Panicum maximum and Leucaena leucocephala mixture indicate that the diets is able to meet the nutrients requirements of small ruminants in the tropics especially during the dry season.


2004 ◽  
Vol 84 (1) ◽  
pp. 105-111 ◽  
Author(s):  
M. Blümmel ◽  
E. E. Grings ◽  
M. R. Haferkamp

The effects of suppression of annual bromes (Bromus japonicus Thunb. and Bromus tectorum L.) by atrazine application on the nutritive quality of extrusa diet samples (EDS) collected from the esophagus were investigated, and EDS quality estimates were compared with weight gain of grazing steers. Analysis on EDS included crude protein (CP), in vitro organic matter degradability (IVOMD), and gas production profiles in N supplemented and unsupplemented incubation media. Brome-suppression tended (P = 0.07) to increase CP content but effects on gas production kinetics and IVOMD were dependent on incubation medium N-level. In N-unsupplemented incubations, asymptotic gas production was less and rates of gas production were greater in EDS from brome-suppressed compared to undisturbed pasture. No such differences were found for N-supplemented incubations. Weight gains of steers grazing brome-suppressed pastures were 16% greater (P = 0.007) than from control pastures. The R2 for the comparison of predicted and measured gains were 0.90 (P < 0.0001), 0.96 (P < 0.0001), and 0.90 (P < 0.0001) using CP, IVOMD (N-low), and IVOMD (N-rich) as the predicting variable, respectively. Best predictions using in vitro gas production measurements were obtained from 24 h gas volume recording (R2 = 0.93, P < 0.0001). Best-fit model (sigmoidal vs. exponential) depended on grazing period and N-level, and the sigmoidal Gompertz model best described most gas production profiles. Key words: Forage quality, gas production, weight gain, beef steers


2018 ◽  
Vol 40 (1) ◽  
pp. 42569
Author(s):  
Francisco Allan Leandro de Carvalho ◽  
Percivaldo Xavier Resende ◽  
Clístenes Amorim Benicio ◽  
Jackson De Oliveira Siqueira ◽  
Daniel Ribeiro Menezes ◽  
...  

The objective this study was to evaluate the effect of maniçoba supplementation in sugar cane silage with respect to chemical-bromatological composition and the in vitro degradation kinetics of the silage. This experiment was conducted in a completely randomized design with four treatments (maniçoba levels: 0, 20, 30, and 40%) and six repetitions. Silage samples were analyzed for their chemical-bromatological composition, digestible energy, metabolizable energy, total digestible nutrients, in vitro gas production and degradability parameters. The silage with higher inclusion level had better bromatological composition (p < 0.05) than the silage without maniçoba for CP, NDF, ADF and MM (6.49, 56.64, 38.66 and 4.52% versus 2.21, 70.96, 49.95 and 2.78%). Higher ME content (2.35 MJ kg-1 MS versus 1.85 MJ kg-1 MS), DE (2.87 Mcal kg-1 MS versus 2.25 Mcal kg-1 MS) and TDN (65.16% versus 51.11%), respectively. The highest values for gas production were also observed in silage with added maniçoba due to higher NFC content (34.87%). With an increase in the proportion of maniçoba, there was an increase in the soluble a fraction, b fraction, and thus a higher effective degradability of dry matter (46.56%). The addition of maniçoba improves the nutritive value of sugarcane silage.  


Sign in / Sign up

Export Citation Format

Share Document