High-diluted thymulin on Ehrlich tumor growth in mice and the importance of tumor microenvironment

Author(s):  
Juliana Gimenez Amaral ◽  
Thayna Neves Cardoso ◽  
Aloísio Cunha De Carvalho ◽  
Cideli de Paula Coelho ◽  
Silvia Waisse ◽  
...  

Introduction: The aim of the present study was to describe different biological aspects of Ehrlich tumor in mice, such as body weight evolution, tumor growth rate, histological organization and systemic immune response after treatment with high-diluted thymulin (10-9 M, named 5CH). Methods: Tumor assessment was focused on macro- and microscopic aspects; parameters included occurrence of necrosis, embolism and tumor development, in addition to quantitative analysis of apoptosis (caspase-3), cell proliferation (Ki-67) and angiogenesis (vascular endothelial growth factor - VEGF) by means of specific immunohistochemistry markers. Spleen cell populations were evaluated by flow cytometry analysis. Results: Mice treated with thymulin 5CH exhibited changes in the tumor microenvironment, such as reduced micro-embolism incidence and cytokeratin expression, with increased caspase-3 expression in the tumor cells. These findings indicate some apoptotic activity by the tumor cells induced by the treatment, even though no reduction of the macroscopic tumor mass occurred. No changes in the systemic immune response were detected, as the balance among spleen cell populations remained unchanged. Conclusions: The results indicate that treatment of mice bearing Ehrlich tumor with thymulin 5CH induces some specific changes in the tumor environment. However, it did not influence systemic immunity parameters. Adjuvant use of thymulin 5CH in oncological clinical practice is still a matter of discussion.

2019 ◽  
Vol 20 (2) ◽  
pp. 377 ◽  
Author(s):  
Giulia Franzolin ◽  
Luca Tamagnone

The inflammatory and immune response elicited by the growth of cancer cells is a major element conditioning the tumor microenvironment, impinging on disease progression and patients’ prognosis. Semaphorin receptors are widely expressed in inflammatory cells, and their ligands are provided by tumor cells, featuring an intense signaling cross-talk at local and systemic levels. Moreover, diverse semaphorins control both cells of the innate and the antigen-specific immunity. Notably, semaphorin signals acting as inhibitors of anti-cancer immune response are often dysregulated in human tumors, and may represent potential therapeutic targets. In this mini-review, we provide a survey of the best known semaphorin regulators of inflammatory and immune cells, and discuss their functional impact in the tumor microenvironment.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Cassia Calixto-Campos ◽  
Ana C. Zarpelon ◽  
Mab Corrêa ◽  
Renato D. R. Cardoso ◽  
Felipe A. Pinho-Ribeiro ◽  
...  

The Ehrlich tumor is a mammary adenocarcinoma of mice that can be developed in solid and ascitic forms depending on its administration in tissues or cavities, respectively. The present study investigates whether the subcutaneous plantar administration of the Ehrlich tumor cells induces pain-like behavior and initial pharmacological susceptibility characteristics. The Ehrlich tumor cells (1 × 104–107cells) induced dose-dependent mechanical hyperalgesia (electronic version of the von Frey filaments), paw edema/tumor growth (caliper), and flinches compared with the saline group between days 2 and 12. There was no difference between doses of cells regarding thermal hyperalgesia in the hot-plate test. Indomethacin (a cyclooxygenase inhibitor) and amitriptyline hydrochloride (a tricyclic antidepressant) treatments did not affect flinches or thermal and mechanical hyperalgesia. On the other hand, morphine (an opioid) inhibited the flinch behavior and the thermal and mechanical hyperalgesia. These effects of morphine on pain-like behavior were prevented by naloxone (an opioid receptor antagonist) treatment. None of the treatments affected paw edema/tumor growth. The results showed that, in addition to tumor growth, administration of the Ehrlich tumor cells may represent a novel model for the study of cancer pain, specially the pain that is susceptible to treatment with opioids, but not to cyclooxygenase inhibitor or to tricyclic antidepressant.


2019 ◽  
Vol 29 (01) ◽  
pp. 1950009 ◽  
Author(s):  
Zonghong Feng ◽  
Xinxing Wu ◽  
Luo Yang

This paper studies a mathematical model for the interaction between tumor cells and Cytotoxic T lymphocytes (CTLs) under drug therapy. We obtain some sufficient conditions for the local and global asymptotical stabilities of the system by using Schur–Cohn criterion and the theory of Lyapunov function. In addition, it is known that the system without any treatment may undergo Neimark–Sacker bifurcation, and there may exist a chaotic region of values of tumor growth rate where the system exhibits chaotic behavior. So it is important to narrow the chaotic region. This may be done by increasing the intensity of the treatment to some extent. Moreover, for a fixed value of tumor growth rate in the chaotic region, a threshold value [Formula: see text] is predicted of the treatment parameter [Formula: see text]. We can see Neimark–Sacker bifurcation of the system when [Formula: see text], and the chaotic behavior for tumor cells ends and the system becomes locally asymptotically stable when [Formula: see text].


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 2623-2623 ◽  
Author(s):  
Bindu Varghese ◽  
Behnaz Taidi ◽  
Adam Widman ◽  
James Do ◽  
R. Levy

Abstract Introduction: Anti-idiotype antibodies against B cell lymphoma have shown remarkable success in causing tumor regression in the clinic. In addition to their known ability to mediate ADCC, anti-idiotype antibodies have also been shown to directly inhibit the proliferation of tumor cells by sending negative growth signals via the target idiotype. However, further studies to investigate this mechanism have been hindered by the failure of patient tumor cells to grow ex vivo. Methods and Results: In order to study this phenomenon further, we developed an antibody against the idiotype on an A20 mouse B lymphoma cell line. A radioactive thymidine incorporation assay showed decreased A20 cell proliferation in the presence of the anti-id antibody ex vivo. In vivo, when mice were treated intraperitoneally (i.p.) with 100 μg of antibody 3 hours post-tumor inoculation (1×106 A20 subcutaneously (s.c.)), tumor growth was delayed for greater than 40 days after which the tumor began to grow once again. Further analysis of these escaping tumor cells by flow cytometry showed that that the tumor cells escaped the antibody-mediated immune response by down-regulating expression of idiotype and IgG on their surfaces although the cells retained idiotype expression intracellularly. This down-regulation of surface idiotype rendered the tumor cells resistant to both ADCC and signaling-induced cell death. The addition of an immunostimulatory bacterial mimic (CpG-DNA; 100 μg × 5 intratumoral (i.t.) injections; Days 2, 3 4, 6 & 8) to antibody therapy (Day 0; 100 μg i.p.) cured large established tumors (Day 0 = 1 cm2) and prevented the occurrence of tumor escapees (p<0.0001). Antibody plus CpG combination therapy in tumor-bearing mice deficient for CD8+ T cells demonstrated the critical role of CD8+ T cells in A20 tumor eradication (p<0.005). Depletion of CD4+ T cells was found to have no significant impact on the therapy. We also found that when mice were inoculated with two tumors and treated with anti-idiotype antibody (i.p.) followed by intratumoral CpG in just one tumor (Day 0=1 cm2; anti-idiotype antibody 100 μg Day 0; 100 μg CpG Days 2, 3, 4, 6 & 8), untreated tumors regressed just as well as CpG-treated tumors indicating a systemic anti-tumor immune response was generated. Conclusion: Anti-idiotype therapy, although effective in delaying tumor growth, frequently generates antigen-loss variants. However, we found that when anti-idiotype antibodies were combined with CpG, even large established tumors were cured due to systemic CD8+ T cell-dependent tumor immunity. Rather than simply mediating ADCC against a single tumor antigen, which requires the constant infusion of antibody to hamper tumor growth, we hypothesize a cytotoxic T-cell response against many tumor antigens was also generated. Such a diverse T-cell repertoire can prevent the emergence of tumor escapees and collectively provide long-lasting tumor protection. These pre-clinical results suggest that anti-tumor antibodies combined with CpG warrant further study in patients with B cell lymphoma.


Author(s):  
С.В. Калиш ◽  
С.В. Лямина ◽  
А.А. Раецкая ◽  
О.П. Буданова ◽  
И.Ю. Малышев

Цель - представить доказательства правомерности гипотезы, что комбинированный пул репрограммированных in vitro макрофагов и лимфоцитов будет эффективно ограничивать пролиферацию опухолевых клеток in vitro , а при введении в организм будет существенно ограничивать развитие опухоли in vivo . Методика. Размножение опухолевых клеток инициировали in vitro путем добавления клеток карциномы Эрлиха (КЭ) в среду культивирования RPMI-1640. Развитие асцитной опухоли in vivo воспроизводили путем внутрибрюшной инъекции клеток КЭ мышам. Результаты. Установлено, что M3 макрофаги вместе с антиген-репрограммированными лимфоцитами оказывают выраженный противоопухолевый эффект и in vitro, и in vivo , который был существеннее противоопухолевого эффекта цисплатина. Заключение. Факты, свидетельствующие, что М3 макрофаги в сочетании с in vitro антиген-репрограммированными лимфоцитами значительно подавляют рост опухоли in vivo , делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли путем предварительного программирования противоопухолевого иммунного ответа «в пробирке». Aim. To test a hypothesis that a combined pool of in vitro reprogrammed macrophages and lymphocytes will effectively limit growth of tumor cells in vitro , and injections of these cells into the body will considerably limit development of a tumor in vivo . Methods. Tumor growth was initiated in vitro by addition of Ehrlich carcinoma (EC) cells to the RPMI-1640 cell culture medium and in vivo by intraperitoneal injection of EC cells into mice. Results. M3 macrophages in combination with antigen-reprogrammed lymphocytes exerted a pronounced antitumor effect both in vitro and in vivo, which was superior to the effect of cisplatin. Conclusion. M3 macrophages in combination with in vitro antigen-reprogrammed lymphocytes significantly inhibited the tumor growth in vivo . This fact justifies development of a clinical version of the tumor growth restricting biotechnology using pre-programming of the antitumor immune response in vitro .


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 3321-3321
Author(s):  
Rong Li ◽  
Meiping Ren ◽  
Ni Chen ◽  
Mao Luo ◽  
Jianbo Wu

Abstract Abstract 3321 Platelets play a fundamental role in maintaining hemostasis and have been shown to participate in hemorrhagic metastasis. However, the role of platelets in the tumor growth, angiogenesis, and metastasis initiation remains undefined. The B16/F10 melanoma cancer cells model of metastasis and the Lewis lung carcinoma (LLC) spontaneous pulmonary metastasis model were used for this purpose. Using induction of thrombocytopenia, primary tumor growth was monitored and every 3 days anti-GPIbα or rat IgG injections were initiated when tumor reached ∼500mm3and continued until tumor reached to 3 weeks. We showed that platelet depletion had no change in tumor growth but reduced metastasis. Platelet depletion significantly increased pericyte coverage and reduced vascular density compared with control mice. We evaluated the ratio of fluorescence intensities within the plasma and tumor following injection of mice with FITC-dextran. We found that the FITC-dextran was similarly deposited into the tumor tissue in either platelet-depleted or control mice, indicating that tumor vessel perfusion did not differ in either platelet-depleted or control mice. To further gain insight into the molecular mechanisms associated with reduced metastasis resulting from platelet depletion, we assessed hypoxia levels by examining pimonidazole adduct formation in the tumors of platelet-depleted and control mice and found decreased hypoxic levels in the platelet-depleted tumors. In addition, expression of the hypoxia-inducible transcription factor HIF-1α was also significantly reduced in the tumors of platelet-depleted mice. Tumor hypoxia is strongly associated with deposition of hemoglobin. We measured the intratumor hemoglobin content, reflecting the level of erythrocytes extravasation. The hemoglobin content in the tumors of mice with platelet-depletion was significantly higher than that of control mice (172.11 ± 20.2 g/L/g Vs. 110.28 ± 12.4 g/L/g, p<0.05) Based on the known induction effects of hypoxia and cancer invasiveness on the expression and activation of the proinvasive tyrosine kinase receptor Met, we analyzed total protein and tyrosine phosphorylation levels of Met in both platelet-depleted and control mice. Western blotting analysis revealed that platelet-depletion caused a significantly decrease of both total Met and phosph-Met in tumors when compared to tumors from control mice. To evaluate intratumoral growth factor level, microdialysis was performed after 3 weeks and there was a significant decrease of extracellular VEGF and TNF-β in platelet depletion mice compared with control mice. Recent studies demonstrated that abundant platelets were detected in the tumor microenvironment apart from the vasculature. Based on the finding platelets in contact with tumor cells outside the bloodstream, we examined the functional effects of co-implantation of B16/F10 tumor cells with platelets on tumor progression and metastasis. B16/F10 melanoma cancer cells were implanted into back of wild type mice. During a 3-weeks growth, co-implantation of B16/F10 with platelets not only led to promoted tumor volume (3968 ± 296 mm3Vs. 2956 ± 180 mm3, p<0.05) and weight (5.529 ± 0.35 g Vs. 3.943 ± 0.738 g, p<0.05 ) compared with B16/F10 alone implantation, but also led to an increase in metastasis. Furthermore, in vitro co-culture of B16/F10 cancer cells with platelets showed a significant increase in B16/F10 cancer cells invasion compared with B16/F10 cancer cells alone. In conclusion, our findings demonstrate for the first time that platelets play a critical role in the initiation of tumor metastasis. Moreover, our findings suggest that platelets within the primary tumor microenvironment are likely involved in tumor progression and metastasis. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A350-A350
Author(s):  
Michelle Winkler ◽  
Michael Curran

BackgroundAnti-checkpoint antibodies blocking T cell co-inhibitory molecules (e.g. αPD-1, αCTLA-4) allow immune effector cells to persist, expand, and maintain cytotoxic function in the tumor microenvironment (TME). Despite being effective in immune ”hot” tumors that are infiltrated by effector anti-tumor cells, immune ”cold” tumors fail to respond to checkpoint blockade. ”Cold” tumors are populated with immune suppressive cells including regulatory T cells, M2 macrophages, and myeloid derived suppressor cells, which inhibit immune effector infiltration and function. These suppressive populations, along with tumor cells, express co-inhibitory checkpoints already targeted with current immunotherapeutics, but also some checkpoints in need of further investigation. We hypothesized that by targeting these checkpoints with cytoreductive antibodies which selectively deplete suppressive populations and tumor cells via ADCC/ADCP, we will compromise ”cold” immune privilege and restore an efficient anti-tumor immune response.MethodsTo identify novel targets to produce checkpoint cytoreductive antibodies we conducted in silico analysis that prioritized immune-inhibitory targets with tumor-specific or tumor-selective expression on cell surface. We cross-referenced a previously published list of transmembrane proteins against publicly sourced datasets including TCGA, HPA, GTEx, BioGPS, and SAGE.1 We then characterized the expression profile of each selected target on tumor cells in vitro and on cell populations in the TME ex vivo via multiparameter flow cytometry. Finally, we assessed the impact of existing checkpoint-targeting cytoreductive antibodies on survival and tumor growth in murine ”hot” and ”cold” tumors.ResultsVISTA and DLL3 were identified via in silico analysis as co-inhibitory surface proteins specifically and selectively in the TME and not in healthy tissues. DLL3 is mainly expressed on tumor cells while VISTA was described mostly on immunosuppressive myeloid cells. An anti-DLL3 antibody was produced by a previous laboratory as an IgG1 antibody, and we engineered a version in the depletive (IgG2a) isotype, which will enable us to target this checkpoint with either a blocking or a depleting antibody. Flow cytometry analysis identified VISTA on multiple myeloid cell populations in ”cold” 4T1 murine mammary tumors while its expression was low in spleen. To start assessing the efficiency of depleting versus non-depleting antibodies, ”hot” CT26 murine tumors and 4T1 tumors were treated with an αCTLA-4-IgG2a or αCTLA-4-IgG1. Groups treated with depleting antibodies showed increased survival compared to groups treated with non-depleting antibodies.ConclusionsNovel immune-inhibitory checkpoints can be identified and targeting them with cytoreductive antibodies leads to a higher anti-tumor immune response. This investigation opens the door to more efficient combination therapies.AcknowledgementsSupported by a training fellowship from The University of Texas Health Science Center at Houston Center for Clinical and Translational Sciences TL1 Program (Grant No. TL1 TR003169).ReferencesWang J, et al. Siglec-15 as an immune suppressor and potential target for normalization cancer immunotherapy. Nat Med 25,(2019).


Sign in / Sign up

Export Citation Format

Share Document