scholarly journals Technical Note: Latitude-time variations of atmospheric column-average dry air mole fractions of CO<sub>2</sub>, CH<sub>4</sub> and N<sub>2</sub>O

2012 ◽  
Vol 12 (16) ◽  
pp. 7767-7777 ◽  
Author(s):  
R. Saito ◽  
P. K. Patra ◽  
N. Deutscher ◽  
D. Wunch ◽  
K. Ishijima ◽  
...  

Abstract. We present a comparison of an atmospheric general circulation model (AGCM)-based chemistry-transport model (ACTM) simulation with total column measurements of CO2, CH4 and N2O from the Total Carbon Column Observing Network (TCCON). The model is able to capture observed trends, seasonal cycles and inter hemispheric gradients at most sampled locations for all three species. The model-observation agreements are best for CO2, because the simulation uses fossil fuel inventories and an inverse model estimate of non-fossil fuel fluxes. The ACTM captures much of the observed seasonal variability in CO2 and N2O total columns (~81 % variance, R>0.9 between ACTM and TCCON for 19 out of 22 cases). These results suggest that the transport processes in troposphere and stratosphere are well represented in ACTM. Thus the poor correlation between simulated and observed CH4 total columns, particularly at tropical and extra-tropical sites, have been attributed to the uncertainties in surface emissions and loss by hydroxyl radicals. While the upward-looking total column measurements of CO2 contains surface flux signals at various spatial and temporal scales, the N2O measurements are strongly affected by the concentration variations in the upper troposphere and stratosphere.

2012 ◽  
Vol 12 (2) ◽  
pp. 5679-5704 ◽  
Author(s):  
R. Saito ◽  
P. K. Patra ◽  
N. Deutscher ◽  
D. Wunch ◽  
K. Ishijima ◽  
...  

Abstract. We present a comparison of an atmospheric general circulation model (AGCM)-based chemistry-transport model (ACTM) simulation with total column measurements of CO2, CH4 and N2O from the Total Carbon Column Observing Network (TCCON). The model is able to capture observed trends, seasonal cycles and inter hemispheric gradients at most sampled locations for all three species. The model-observation agreements are best for CO2, because the simulation uses fossil fuel inventories and an inverse model estimate of non-fossil fuel fluxes. The ACTM captures much of the observed seasonal variability in CO2 and N2O total columns (~81% variance, R>0. 9 between ACTM and TCCON for 19 out of 22 cases). These results suggest that the transport processes in troposphere and stratosphere are well represented in ACTM. Thus the poor correlation between simulated and observed CH4 total columns, particularly at tropical and extra-tropical sites,have been attributed to the uncertainties in surface emissions and loss by hydroxyl radicals. While the upward-looking total column measurements of CO2 contains surface flux signals at various spatial and temporal scales, the N2O measurements are strongly affected by the concentration variations in the upper troposphere and stratosphere.


2013 ◽  
Vol 13 (8) ◽  
pp. 4349-4357 ◽  
Author(s):  
G. Keppel-Aleks ◽  
P. O. Wennberg ◽  
C. W. O'Dell ◽  
D. Wunch

Abstract. We assess the large-scale, top-down constraints on regional fossil fuel emissions provided by observations of atmospheric total column CO2, XCO2. Using an atmospheric general circulation model (GCM) with underlying fossil emissions, we determine the influence of regional fossil fuel emissions on global XCO2 fields. We quantify the regional contrasts between source and upwind regions and probe the sensitivity of atmospheric XCO2 to changes in fossil fuel emissions. Regional fossil fuel XCO2 contrasts can exceed 0.7 ppm based on 2007 emission estimates, but have large seasonal variations due to biospheric fluxes. Contamination by clouds reduces the discernible fossil signatures. Nevertheless, our simulations show that atmospheric fossil XCO2 can be tied to its source region and that changes in the regional XCO2 contrasts scale linearly with emissions. We test the GCM results against XCO2 data from the GOSAT satellite. Regional XCO2 contrasts in GOSAT data generally scale with the predictions from the GCM, but the comparison is limited by the moderate precision of and relatively few observations from the satellite. We discuss how this approach may be useful as a policy tool to verify national fossil emissions, as it provides an independent, observational constraint.


2012 ◽  
Vol 12 (6) ◽  
pp. 3131-3145 ◽  
Author(s):  
A. P. K. Tai ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
E. M. Leibensperger ◽  
L. Zhang ◽  
...  

Abstract. We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ~1000 sites (~200 sites for PM2.5 components) and compared to results from the GEOS-Chem chemical transport model (CTM). All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH) is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40% of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM) using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign), with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos) when diagnosing the effect of climate change on PM2.5, and suggest that analysis of meteorological modes of variability provides a computationally more affordable approach for this purpose than coupled GCM-CTM studies.


2011 ◽  
Vol 11 (8) ◽  
pp. 24085-24125 ◽  
Author(s):  
E. M. Leibensperger ◽  
L. J. Mickley ◽  
D. J. Jacob ◽  
W.-T. Chen ◽  
J. H. Seinfeld ◽  
...  

Abstract. We use the GEOS-Chem chemical transport model combined with the GISS general circulation model to calculate the aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950–2050 period, based on historical emission inventories and future projections from the IPCC A1B scenario. The aerosol simulation is evaluated with observed spatial distributions and 1980–2010 trends of aerosol concentrations and wet deposition in the contiguous US. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that it peaked in 1970–1990, with values over the eastern US (east of 100° W) of −2.0 W m−2 for direct forcing including contributions from sulfate (−2.0 W m−2), nitrate (−0.2 W m−2), organic carbon (−0.2 W m−2), and black carbon (+0.4 W m−2). The aerosol indirect effect is of comparable magnitude to the direct forcing. We find that the forcing declined sharply from 1990 to 2010 (by 0.8 W m−2 direct and 1.0 W m−2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60 % from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources may have already been realized by 2010, however some additional warming is expected through 2020. The small positive radiative forcing from US BC emissions (+0.3 W m−2 over the eastern US in 2010) suggests that an emission control strategy focused on BC would have only limited climate benefit.


2017 ◽  
Vol 35 (5) ◽  
pp. 1023-1032 ◽  
Author(s):  
Fabio Egito ◽  
Hisao Takahashi ◽  
Yasunobu Miyoshi

Abstract. The planetary-wave-induced airglow variability in the mesosphere and lower thermosphere (MLT) is investigated using simulations with the general circulation model (GCM) of Kyushu University. The model capabilities enable us to simulate the MLT OI557.7 nm, O2b(0–1), and OH(6–2) emissions. The simulations were performed for the lower-boundary meteorological conditions of 2005. The spectral analysis reveals that at middle latitudes, oscillations of the emission rates with the period of 2–20 days appear throughout the year. The 2-day oscillations are prominent in the summer and the 5-, 10-, and 16-day oscillations dominate from the autumn to spring equinoxes. The maximal amplitude of the variations induced by the planetary waves was 34 % in OI557.7 nm, 17 % in O2b(0–1), and 8 % in OH(6–2). The results were compared to those observed in the middle latitudes. The GCM simulations also enabled us to investigate vertical transport processes and their effects on the emission layers. The vertical transport of atomic oxygen exhibits similar periodic variations to those observed in the emission layers induced by the planetary waves. The results also show that the vertical advection of atomic oxygen due to the wave motion is an important factor in the signatures of the planetary waves in the emission rates.


2009 ◽  
Vol 137 (6) ◽  
pp. 1863-1880 ◽  
Author(s):  
P. Heinrich ◽  
X. Blanchard

Abstract Atmospheric transport of the natural radionuclide 210Pb is simulated by a general circulation model (GCM) and calculated surface concentrations are compared with those recorded at the Tahiti station on a daily scale. Numerical results for 2006 show the underestimation of concentrations for most recorded peaks. The purpose of this paper is to explain the observed discrepancies, to evaluate the GCM physical parameterizations, and to determine by numerical means the concentrations at Tahiti for a pollutant circulating across the South Pacific Ocean. Three meteorological situations in 2006 are further analyzed. Circulation over Tahiti for these periods is simulated by a mesoscale meteorological model using four nested grids with resolutions ranging from 27 to 1 km. The calculated wind fields are validated by those observed at two stations on the northwest coast of Tahiti, which is exposed both to topography-induced vortices and to thermally driven local breezes. Atmospheric dispersion of an offshore plume is then calculated by a particle Lagrangian transport model, driven by the mesoscale model at 1- and 81-km resolutions, representing local and global circulations, respectively. Simulations at 1-km resolution show the complex atmospheric circulation over Tahiti, which results in a large spatial and temporal variability of 210Pb surface concentrations on an hourly scale. The impact of local circulation is, however, limited when daily averaged concentrations at the station are considered. Under the studied regimes, transport simulations at the two resolutions lead to similar daily averaged concentrations. The deficiencies of the GCM in simulating daily averaged 210Pb concentrations could be attributable to the deep convection parameterization.


2015 ◽  
Vol 28 (9) ◽  
pp. 3786-3805 ◽  
Author(s):  
Han-Ching Chen ◽  
Chung-Hsiung Sui ◽  
Yu-Heng Tseng ◽  
Bohua Huang

Abstract The Simple Ocean Data Assimilation, version 2.2.4 (SODA 2.2.4), analysis for the period of 1960–2010 is used to study the variability of Pacific subtropical cells (STCs) and its causal relation with tropical climate variability. Results show that the interior STC transport into the equatorial basin through 9°S and 9°N is well connected with equatorial sea surface temperature (SST) (9°S–9°N, 180°–90°W). The highest correlation at interannual time scales is contributed by the western interior STC transport within 160°E and 130°W. It is known that the ENSO recharge–discharge cycle experiences five stages: the recharging stage, recharged stage, warmest SST stage, discharging stage, and discharged stage. A correlation analysis of interior STC transport convergence, equatorial warm water volume (WWV), wind stress curl, and SST identifies the time intervals between the five stages, which are 8, 10, 2, and 8 months, respectively. A composite analysis for El Niño–developing and La Niña–developing events is also performed. The composited ENSO evolutions are in accordance with the recharge–discharge theory and the corresponding time lags between the above denoted five stages are 4–12, 6, 2, and 4 months, respectively. For stronger El Niño events, the discharge due to interior STC transport at 9°N terminates earlier than that at 9°S because of the southward migration of westerly winds following the El Niño peak phase. This study clarifies subsurface transport processes and their time intervals, which are useful for refinement of theoretical models and for evaluating coupled ocean–atmosphere general circulation model results.


2011 ◽  
Vol 11 (2) ◽  
pp. 6805-6843 ◽  
Author(s):  
G. B. Hedegaard ◽  
A. Gross ◽  
J. H. Christensen ◽  
W. May ◽  
H. Skov ◽  
...  

Abstract. The ozone chemistry over three centuries has been simulated based on climate prediction from a global climate model and constant anthropogenic emissions in order to separate out the effects on air pollution from climate change. Four decades in different centuries has been simulated using the chemistry version of the atmospheric long-range transport model; the Danish Eulerian Hemispheric Model (DEHM) forced with meteorology predicted by the ECHAM5/MPI-OM coupled Atmosphere-Ocean General Circulation Model. The largest changes in both meteorology, ozone and its precursors is found in the 21st century, however, also significant changes are found in the 22nd century. At surface level the ozone concentration is predicted to increase due to climate change in the areas where substantial amounts of ozone precursors are emitted. Elsewhere a significant decrease is predicted at the surface. In the free troposphere a general increase is found in the entire Northern Hemisphere except in the tropics, where the ozone concentration is decreasing. In the Arctic the ozone concentration will increase in the entire air column, which most likely is due to changes in transport. The change in temperature, humidity and the naturally emitted Volatile Organic Compounds (VOCs) are governing with respect to changes in ozone both in the past, present and future century.


2020 ◽  
Vol 13 (9) ◽  
pp. 3817-3838
Author(s):  
Xiao Lu ◽  
Lin Zhang ◽  
Tongwen Wu ◽  
Michael S. Long ◽  
Jun Wang ◽  
...  

Abstract. Chemistry plays an indispensable role in investigations of the atmosphere; however, many climate models either ignore or greatly simplify atmospheric chemistry, limiting both their accuracy and their scope. We present the development and evaluation of the online global atmospheric chemical model BCC-GEOS-Chem v1.0, coupling the GEOS-Chem chemical transport model (CTM) as an atmospheric chemistry component in the Beijing Climate Center atmospheric general circulation model (BCC-AGCM). The GEOS-Chem atmospheric chemistry component includes detailed tropospheric HOx–NOx–volatile organic compounds–ozone–bromine–aerosol chemistry and online dry and wet deposition schemes. We then demonstrate the new capabilities of BCC-GEOS-Chem v1.0 relative to the base BCC-AGCM model through a 3-year (2012–2014) simulation with anthropogenic emissions from the Community Emissions Data System (CEDS) used in the Coupled Model Intercomparison Project Phase 6 (CMIP6). The model captures well the spatial distributions and seasonal variations in tropospheric ozone, with seasonal mean biases of 0.4–2.2 ppbv at 700–400 hPa compared to satellite observations and within 10 ppbv at the surface to 500 hPa compared to global ozonesonde observations. The model has larger high-ozone biases over the tropics which we attribute to an overestimate of ozone chemical production. It underestimates ozone in the upper troposphere which is likely due either to the use of a simplified stratospheric ozone scheme or to biases in estimated stratosphere–troposphere exchange dynamics. The model diagnoses the global tropospheric ozone burden, OH concentration, and methane chemical lifetime to be 336 Tg, 1.16×106 molecule cm−3, and 8.3 years, respectively, which is consistent with recent multimodel assessments. The spatiotemporal distributions of NO2, CO, SO2, CH2O, and aerosol optical depth are generally in agreement with satellite observations. The development of BCC-GEOS-Chem v1.0 represents an important step for the development of fully coupled earth system models (ESMs) in China.


2010 ◽  
Vol 10 (12) ◽  
pp. 30569-30611 ◽  
Author(s):  
G. Keppel-Aleks ◽  
P. O. Wennberg ◽  
T. Schneider

Abstract. Observations of gradients in the total CO2 column, ‹CO2› are expected to provide improved constraints on surface fluxes of CO2. Here we use a general circulation model with a variety of prescribed carbon fluxes to investigate how variations in ‹CO2› arise. On diurnal scales, variations are small and are forced by both local fluxes and advection. On seasonal scales, gradients are set by the north-south flux distribution. On synoptic scales, variations arise due to large-scale eddy-driven disturbances of the meridional gradient. In this case, because variations in ‹CO2› are tied to synoptic activity, significant correlations exist between ‹CO2› and dynamical tracers. We illustrate how such correlations can be used to describe the north-south gradients of ‹CO2› and the underlying fluxes on continental scales. These simulations suggest a novel analysis framework for using column observations in carbon cycle science.


Sign in / Sign up

Export Citation Format

Share Document