scholarly journals Health and Economic Impacts of Ozone Pollution in China: a provincial level analysis

2017 ◽  
Author(s):  
Yang Xie ◽  
Hancheng Dai ◽  
Yanxu Zhang ◽  
Tatsuya Hanaoka ◽  
Toshihiko Masui

Abstract. Many studies have reported associations between ozone pollution and morbidity and mortality, but few studies focus on the health and economic effects at China's regional level. This study evaluates the ozone pollution-related health impacts on China's national and provincial economy and compares them with the impacts from PM2.5. We also explore the mitigation potential across 30 provinces of China. An integrated approach is developed that combines an air pollutant emission projection model (GAINS), an air quality model (GEOS-Chem), a health model using the latest exposure-response functions, medical prices and value of statistical life (VSL), and a general equilibrium model (CGE). Results show that lower income western provinces encounter severer health impacts and economic burdens due to high natural background levels of ozone pollution, whereas the impact in southern and central provinces is relatively lower. Without a control policy, in 2030 China will experience a 4.24 billion USD Gross Domestic Production (GDP) loss (equivalent to 0.034 %), and a 285 billion USD (equivalent to 2.34 % of GDP) life loss. In contrast, with a control policy, the GDP and VSLs loss will be reduced to 3.72 (0.030 %) and 242 billion USD (1.99 %), respectively. We conclude that health and economic impacts of ozone pollution are significantly lower than PM2.5, but are much more difficult to mitigate. The Chinese government should promote the air pollution control policies that jointly reduce both PM2.5 pollution and ozone pollution, and the public should adjust their lifestyle according to the air quality information.

2017 ◽  
Author(s):  
Monica Crippa ◽  
Greet Janssens-Maenhout ◽  
Diego Guizzardi ◽  
Rita Van Dingenen ◽  
Frank Dentener

Abstract. In this work we couple the HTAPv2.2 global air pollutant emission inventory with the global source receptor model TM5-FASST to evaluate the relative contribution of the major anthropogenic emission sources (power generation, industry, ground transport, residential, agriculture and international shipping) to air quality and human health in 2010. We focus on particulate matter (PM) concentrations because of the relative importance of PM2.5 emissions in populated areas and the proven cumulative negative effects on human health. We estimate that in 2010 regional annual averaged anthropogenic PM2.5 concentrations varied between ca. 1 and 40 μg/m3 depending on the region, with the highest concentrations observed in China and India, and lower concentrations in Europe and North America. The relative contribution of anthropogenic emission source sectors to PM2.5 concentrations varies between the regions. European PM pollution is mainly influenced by the agricultural and residential sectors, while the major contributing sectors to PM pollution in Asia and the emerging economies are the power generation, industrial and residential sectors. We also evaluate the emission sectors and emission regions in which pollution reduction measures would lead to the largest improvement on the overall air quality. We show that in order to improve air quality, regional policies should be implemented (e.g. in Europe) due to the transboundary features of PM pollution. In addition, we investigate emission inventory uncertainties and their propagation to PM2.5 concentrations, in order to identify the most effective strategies to be implemented at sector and regional level to improve emission inventories knowledge and air quality. We show that the uncertainty of PM concentrations depends not only on the uncertainty of local emission inventories but also on that of the surrounding regions. Finally, we propagate emission inventories uncertainty to PM concentrations and health impacts.


2016 ◽  
Vol 97 (4) ◽  
pp. 553-559 ◽  
Author(s):  
Zhanshan Wang ◽  
Yunting Li ◽  
Tian Chen ◽  
Dawei Zhang ◽  
Lingjun Li ◽  
...  

Abstract The Beijing government has made great effort to solve the air pollution problem in recent years. In this paper, the major air pollution control measures and the air quality improvement from 2008 to 2014 in Beijing were represented. With the implementation of a series of unconventional and high–air pollutant reduction measures in Beijing and the surrounding area, good air quality during both the 2008 Olympic Games and the 2014 Asia–Pacific Economic Cooperation (APEC) conference was guaranteed. Notably, a new scientific approach was applied to formulate air pollution control policy during the APEC conference. In addition to the established measures, two periods of enhanced and targeted reduction measures were implemented according to the forecast in advance. Finally, suggestions for improving air quality in Beijing were offered on the basis of the monitoring results and analyses during the APEC conference.


Atmosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 788
Author(s):  
Rong Feng ◽  
Hongmei Xu ◽  
Zexuan Wang ◽  
Yunxuan Gu ◽  
Zhe Liu ◽  
...  

In the context of the outbreak of coronavirus disease 2019 (COVID-19), strict lockdown policies were implemented to control nonessential human activities in Xi’an, northwest China, which greatly limited the spread of the pandemic and affected air quality. Compared with pre-lockdown, the air quality index and concentrations of PM2.5, PM10, SO2, and CO during the lockdown reduced, but the reductions were not very significant. NO2 levels exhibited the largest decrease (52%) during lockdown, owing to the remarkable decreased motor vehicle emissions. The highest K+ and lowest Ca2+ concentrations in PM2.5 samples could be attributed to the increase in household biomass fuel consumption in suburbs and rural areas around Xi’an and the decrease in human physical activities in Xi’an (e.g., human travel, vehicle emissions, construction activities), respectively, during the lockdown period. Secondary chemical reactions in the atmosphere increased in the lockdown period, as evidenced by the increased O3 level (increased by 160%) and OC/EC ratios in PM2.5 (increased by 26%), compared with pre-lockdown levels. The results, based on a natural experiment in this study, can be used as a reference for studying the formation and source of air pollution in Xi’an and provide evidence for establishing future long-term air pollution control policies.


2020 ◽  
Vol 9 (8) ◽  
pp. 2351
Author(s):  
Łukasz Kuźma ◽  
Krzysztof Struniawski ◽  
Szymon Pogorzelski ◽  
Hanna Bachórzewska-Gajewska ◽  
Sławomir Dobrzycki

(1) Introduction: air pollution is considered to be one of the main risk factors for public health. According to the European Environment Agency (EEA), air pollution contributes to the premature deaths of approximately 500,000 citizens of the European Union (EU), including almost 5000 inhabitants of Poland every year. (2) Purpose: to assess the gender differences in the impact of air pollution on the mortality in the population of the city of Bialystok—the capital of the Green Lungs of Poland. (3) Materials and Methods: based on the data from the Central Statistical Office, the number—and causes of death—of Białystok residents in the period 2008–2017 were analyzed. The study utilized the data recorded by the Provincial Inspectorate for Environmental Protection station and the Institute of Meteorology and Water Management during the analysis period. Time series regression with Poisson distribution was used in statistical analysis. (4) Results: A total of 34,005 deaths had been recorded, in which women accounted for 47.5%. The proportion of cardiovascular-related deaths was 48% (n = 16,370). An increase of SO2 concentration by 1-µg/m3 (relative risk (RR) 1.07, 95% confidence interval (CI) 1.02–1.12; p = 0.005) and a 10 °C decrease of temperature (RR 1.03, 95% CI 1.01–1.05; p = 0.005) were related to an increase in the number of daily deaths. No gender differences in the impact of air pollution on mortality were observed. In the analysis of the subgroup of cardiovascular deaths, the main pollutant that was found to have an effect on daily mortality was particulate matter with a diameter of 2.5 μm or less (PM2.5); the RR for 10-µg/m3 increase of PM2.5 was 1.07 (95% CI 1.02–1.12; p = 0.01), and this effect was noted only in the male population. (5) Conclusions: air quality and atmospheric conditions had an impact on the mortality of Bialystok residents. The main air pollutant that influenced the mortality rate was SO2, and there were no gender differences in the impact of this pollutant. In the male population, an increased exposure to PM2.5 concentration was associated with significantly higher cardiovascular mortality. These findings suggest that improving air quality, in particular, even with lower SO2 levels than currently allowed by the World Health Organization (WHO) guidelines, may benefit public health. Further studies on this topic are needed, but our results bring questions whether the recommendations concerning acceptable concentrations of air pollutants should be stricter, or is there a safe concentration of SO2 in the air at all.


2021 ◽  
Author(s):  
Sarah Letaïef ◽  
Pierre Camps ◽  
Thierry Poidras ◽  
Patrick Nicol ◽  
Delphine Bosch ◽  
...  

<p>Numerous studies have already shown the possibility of tracing the sources, the<br>compositions, and the concentration of atmospheric pollutants deposited on plant<br>leaves. In environmental geochemistry, inter-element and isotope ratios from<br>chemical element assays have been used for these purposes. Alternatively,<br>environmental magnetism represents a quick and inexpensive asset that is<br>increasingly used as a relative indicator for concentrations of air pollutant on bio<br>accumulator surfaces such as plants. However, a fundamental issue is still pending:<br>Do plants in urban areas represent a sink for fine particles that is sufficiently effective<br>to improve air quality? This is a very topical issue because some studies have shown<br>that the foliage can trap fine particles by different dry deposition processes, while<br>other studies based on CFD models indicate that plant hedges in cities can hinder<br>the atmospheric dispersion of pollutants and therefore increase pollution at the level of<br>emission sources such as traffic. To date, no consensus was made because several<br>factors not necessary well known must be taken into account, such as, PM<br>concentration and size, prevailing wind, surface structures, epicuticular wax, to<br>mention just a few examples. A first step toward the understanding of the impact of<br>urban greens on air quality is the precise determination of the deposition velocity (Vd)<br>parameter. This latter is specific for each species and it is most of the time<br>underestimated in modeling-based studies by taking standard values.<br>In that perspective, we built a wind tunnel (6 m long, 86 cm wide and 86 cm high) to<br>perform analogical experiments on different endemic species. All parameters are<br>controlled, i.e, the wind speed, the nature and the injection time of pollutants (Gasoline<br>or Diesel exhausts, brakes or tires dust, etc…). We can provide the PM concentrations<br>upwind and downwind of natural reconstituted hedges by two dustmeters (LOACs -<br>MétéoModem). Beforehand, parameters such as the hedge resistance (%) or the leaf<br>area index (LAI) have been estimated for each studied specie to allow comparability<br>between plants removal potential. The interest would ultimately combine PM<br>concentration measured by size bins from the LOACs with magnetic measurements<br>(ARM, IRM100mT, IRM300mT and SIRM) of plant leaves. The idea is to check whether it<br>would be possible to precisely determine in situ the dust removal rate by urban greens<br>with environmental magnetism measurements. Up to now, we have carried out on<br>different endemic species such as Elaeagnus x ebbingei leaves and Mediterranean<br>pine needles, the results of which will be presented.</p>


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1603
Author(s):  
Ana R. Gamarra ◽  
Yolanda Lechón ◽  
Marta G. Vivanco ◽  
Mark Richard Theobald ◽  
Carmen Lago ◽  
...  

This paper assesses the health impact, in terms of the reduction of premature deaths associated with changes in air pollutant exposure, resulting from double-aim strategies for reducing emissions of greenhouse gases and air pollutants from the transport sector for the year 2030 in Spain. The impact on air quality of selected measures for reducing emissions from the transport sector (increased penetration of biofuel and electric car use) was assessed by air quality modeling. The estimation of population exposure to NO2, particulate matter (PM) and O3 allows for estimation of associated mortality and external costs in comparison with the baseline scenario with no measures. The results show that the penetration of the electric vehicle provided the largest benefits, even when the emissions due to the additional electricity demand were considered.


2019 ◽  
Author(s):  
Lang Wang ◽  
Amos P. K. Tai ◽  
Chi-Yung Tam ◽  
Mehliyar Sadiq ◽  
Peng Wang ◽  
...  

Abstract. Surface ozone (O3) is an important air pollutant and greenhouse gas. Land use and land cover (LULC) is one of the critical factors influencing ozone, in addition to anthropogenic emissions and climate. LULC change can on the one hand affect ozone biogeochemically, i.e., via dry deposition and biogenic emissions of volatile organic compounds (VOCs). LULC change can on the other hand alter regional- to large-scale climate through modifying albedo and evapotranspiration, which can lead to changes in surface temperature, hydrometeorology and atmospheric circulation that can ultimately impact ozone biogeophysically over local and remote areas. Such biogeophysical effects of LULC on ozone are largely understudied. This study investigates the individual and combined biogeophysical and biogeochemical effects of LULC on ozone, and explicitly examines the critical pathway for how LULC change impacts ozone pollution. A global coupled atmosphere–chemistry–land model is driven by projected LULC changes from the present day (2000) to future (2050) under RCP4.5 and RCP8.5 scenarios, focusing on the boreal summer. Results reveal that when considering biogeochemical effects only, surface ozone is predicted to have slight changes by up to 2 ppbv maximum in some areas due to LULC changes. It is primarily driven by changes in isoprene emission and dry deposition counteracting each other in shaping ozone. In contrast, when considering the integrated effect of LULC, ozone is more substantially altered by up to 6 ppbv over several regions, reflecting the importance of biogeophysical effects on ozone changes. Furthermore, large areas of these ozone changes are found over the regions without LULC changes where the biogeophysical effect is the only pathway for such changes. The mechanism is likely that LULC change induces a regional circulation response, in particular the formation of anomalous stationary high-pressure systems, shifting of moisture transport, and near-surface warming over the middle-to-high northern latitudes in boreal summer, owing to associated changes in albedo and surface energy budget. Such temperature changes then alter ozone substantially. We conclude that the biogeophysical effect of LULC is an important pathway for the influence of LULC change on ozone air quality over both local and remote regions, even in locations without significant LULC changes. Overlooking the impact of biogeophysical effect may cause evident underestimation of the impacts of LULC change on ozone pollution.


2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 865.1-865
Author(s):  
H. H. Chen ◽  
W. C. Chao ◽  
Y. H. Chen ◽  
D. Y. Chen ◽  
C. H. Lin

Background:Interstitial lung disease (ILD) is characterized by progressive inflammation and fibrosis, and accumulating evidence have shown that exposure to air pollutants was associated with the development of ILD. Autoimmune diseases are highly correlated with ILD, including connective tissue disease-associated ILD (CTD-ILD) as well as interstitial pneumonia with autoimmune features (IPAF), and the development of ILD is a crucial cause of morbidity and mortality in patients with autoimmune diseases. One recent Taiwanese study reported that exposure to air pollutants was associated with incident systemic lupus erythematosus (SLE). However, the impact of air pollutants on the development of ILD among patients with autoimmune diseases remains unknown.Objectives:The study aimed to address the impact of accumulating exposure to air pollutant above moderate level, defined by Air Quality Index (AQI) value higher than 50, on the development of ILD in patients with autoimmune diseases including SLE, rheumatoid arthritis (RA) and primary Sjögren’s syndrome (SS).Methods:We used a National Health Insurance Research Database in Taiwan to enroll patients with SLE (International Classification of Diseases (ICD)-9 code 710.0, n=13,211), RA (ICD-9 code 714.0 and 714.30–714.33, n=32,373), and primary SS (ICD-9 code, 710.0, n=15,246) between 2001 and 2013. We identified newly diagnosed ILD cases (ICD-code 515) between 2012 and 2013 and selected age, sex, disease duration and index-year matched (1:4) patients as non-ILD controls. The hourly levels of air pollutants one year prior to the index-date were obtained from 60 air quality monitoring stations across Taiwan, and the air pollutants in the present study consisted of particulate matter <2.5 μm in size (PM2.5), particulate matter <10 μm in size (PM10), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2) and ozone (O3). We used a spatio-temporal model built by a deep-learning mechanism to estimate levels of air pollutants at 374 residential locations based on data of 3 air quality monitoring stations near the location (8). Notably, we used cumulative exposed hours to air pollutants higher than modest level, defined by AQI criteria, given that daily mean level of air pollutants might possibly underestimate the triggered inflammatory effect by a temporary exposure of high-level air pollutant. A conditional logistic regression was used to determine the association between exposure to air pollutant and the development of ILD, adjusting age, gender, Charlson Comorbidity Index (CCI), urbanization, family income, and medications for autoimmune diseases.Results:A total of 272 patients with newly diagnosed ILD were identified among patients with autoimmune diseases, including 39 with SLE, 135 with RA, and 98 with primary SS. We found that the duration of exposure to PM 2.5 higher than modest level was associated with the risk of ILD development in patients with SS (adjOR 1.07, 95% CI 1.01–1.13), and similar trends were also found in patients with SLE (adjOR 1.03, 95% CI 0.95–1.12) and RA (adjOR 1.03, 95% CI 0.99–1.07). Intriguingly, we observed an inverse correlation between the duration of exposure to O3 and the development of ILD in patients with SS (adjOR 0.83, 95% CI 0.70–0.99); however, the finding was not found in patients with SLE (adjOR 1.13, 95% CI 0.92–1.37) and RA (adjOR 0.98, 95% CI 0.87–1.11).Conclusion:In conclusion, we identified that longer exposure to PM2.5 higher than modest level tended to be associated with the development of ILD in patients with autoimmune diseases, mainly SS.References:[1] Araki T, Putman RK, Hatabu H, Gao W, Dupuis J, Latourelle JC, et al. Development and Progression of Interstitial Lung Abnormalities in the Framingham Heart Study. Am J Respir Crit Care Med 2016;194:1514-1522.[2] Tang KT, Tsuang BJ, Ku KC, Chen YH, Lin CH, Chen DY. Relationship between exposure to air pollutants and development of systemic autoimmune rheumatic diseases: a nationwide population-based case-control study. Ann Rheum Dis 2019;78:1288-1291.Disclosure of Interests:Hsin-Hua Chen: None declared, Wen-Cheng Chao: None declared, Yi-Hsing Chen Grant/research support from: Taiwan Ministry of Science and Technology, Taiwan Department of Health, Taichung Veterans General Hospital, National Yang-Ming University, GSK, Pfizer, BMS., Consultant of: Pfizer, Novartis, Abbvie, Johnson & Johnson, BMS, Roche, Lilly, GSK, Astra& Zeneca, Sanofi, MSD, Guigai, Astellas, Inova Diagnostics, UCB, Agnitio Science Technology, United Biopharma, Thermo Fisher, Gilead., Paid instructor for: Pfizer, Novartis, Johnson & Johnson, Roche, Lilly, Astra& Zeneca, Sanofi, Astellas, Agnitio Science Technology, United Biopharma., Speakers bureau: Pfizer, Novartis, Abbvie, Johnson & Johnson, BMS, Roche, Lilly, GSK, Astra& Zeneca, Sanofi, MSD, Guigai, Astellas, Inova Diagnostics, UCB, Agnitio Science Technology, United Biopharma, Thermo Fisher, Gilead., Der-Yuan Chen: None declared, Ching-Heng Lin: None declared


Author(s):  
Jasleen Kaur Sethi ◽  
Mamta Mittal

ABSTRACT Objective: The focus of this study is to monitor the effect of lockdown on the various air pollutants due to the coronavirus disease (COVID-19) pandemic and identify the ones that affect COVID-19 fatalities so that measures to control the pollution could be enforced. Methods: Various machine learning techniques: Decision Trees, Linear Regression, and Random Forest have been applied to correlate air pollutants and COVID-19 fatalities in Delhi. Furthermore, a comparison between the concentration of various air pollutants and the air quality index during the lockdown period and last two years, 2018 and 2019, has been presented. Results: From the experimental work, it has been observed that the pollutants ozone and toluene have increased during the lockdown period. It has also been deduced that the pollutants that may impact the mortalities due to COVID-19 are ozone, NH3, NO2, and PM10. Conclusions: The novel coronavirus has led to environmental restoration due to lockdown. However, there is a need to impose measures to control ozone pollution, as there has been a significant increase in its concentration and it also impacts the COVID-19 mortality rate.


2017 ◽  
Author(s):  
Lei Zhang ◽  
Tianliang Zhao ◽  
Sunling Gong ◽  
Shaofei Kong ◽  
Lili Tang ◽  
...  

Abstract. Air pollutant emissions play a determinant role in deteriorating air quality. However, an uncertainty in emission inventories is still the key problem for modeling air pollution. In this study, an updated emission inventory of coal-fired power plants (UEIPP) based on online monitoring data in Jiangsu province of East China for the year of 2012 was implemented in the widely used Multi-resolution Emission Inventory for China (MEIC). By employing the Weather Research and Forecasting Model with Chemistry (WRF-Chem), two simulations were executed to assess the atmospheric environmental change by using the original MEIC emission inventory and the MEIC inventory with the UEIPP. A synthetic analysis shows that (1) compared to the power emissions of MEIC, PM2.5, PM10, SO2 and NOx were lower, and CO, black carbon (BC), organic carbon (OC) and NMVOCs were higher in the UEIPP, reflecting a large discrepancy in the power emissions over East China; (2) In accordance with the changes of UEIPP, the modeled concentrations were reduced for SO2 and NO2, and increased for most areas of primary OC, BC and CO, whose concentrations in atmosphere are highly dependent on emission changes. (3) Interestingly, when the UEIPP was used, the atmospheric oxidizing capacity significantly reinforced, reflecting by increased oxidizing agents, e.g. O3 and OH, thus directly strengthened the chemical production from SO2 and NOx to sulfate and nitrate, which offset the reduction of primary PM2.5 emissions especially in the haze days. This study indicated the importance of updating air pollutant emission inventories in simulating the complex atmospheric environment changes with the implications on air quality and environmental changes.


Sign in / Sign up

Export Citation Format

Share Document