scholarly journals Eurodelta multi-model simulated and observed PM trends in Europe in the period of 1990–2010

2021 ◽  
Author(s):  
Svetlana Tsyro ◽  
Wenche Aas ◽  
Augustin Colette ◽  
Camilla Andersson ◽  
Bertrand Bessagnet ◽  
...  

Abstract. The Eurodelta-Trends multi-model experiment, aimed to assess the efficiency of emission mitigation measures in improving air quality in Europe during 1990–2010, was designed to answer a series of questions regarding European pollution trends. i.e. were there significant trends detected by observations? do the models manage to reproduce observed trends? how close is the agreement between the models and how large are the deviations from observations? In this paper, we address these issues with respect to PM pollution. An in-depth trend analysis has been performed for PM10 and PM2.5 for the period of 2000–2010, based on results from six chemical transport models and observational data from the EMEP (Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe) monitoring network. Given harmonization of set up and main input data, the differences in model results should mainly result from differences in the process formulations within the models themselves, and the spread in the models simulated trends could be regarded as an indicator for modelling uncertainty. The model ensemble simulations indicate overall decreasing trends in PM10 and PM2.5, with reduction by between 2 and 6 μg m−3 m−3 (or between 10 and 30 %) from 2000 to 2010. Compared to PM2.5, relative PM10 trends are weaker due to large inter-annual variability of natural coarse PM within the former. The changes in the concentrations of PM individual components are in general consistent with emission reductions. There is a reasonable agreement in PM trends estimated by the individual models, with the inter-model variability below 30–40 % over most of Europe, increasing to 50–60 % in northern and eastern parts of EDT domain. Averaged over measurement sites (26 for PM10 and 13 for PM2.5), the mean ensemble simulated trends are −0.24 and −0.22 μg m−3 year−1 for PM10 and PM2.5, which are somewhat weaker than the observed trends of −0.35 and −0.40 μg m−3 year−1, respectively, partly due to models underestimation of PM concentrations. The correspondence is better in relative PM10 and PM2.5 trends, which are −1.7 and −2.0 % year−1 from the model ensemble and −2.1 and −2.9 % year−1 from the observations, respectively. The observations identify significant trends for PM10 at 56 % of the sites and for PM2.5 at 36 % of the sites, which is somewhat less that the fractions of significant modelled trends. Further, we find somewhat smaller spatial variability of modelled PM trends with respect to the observed ones across Europe and also within individual countries. The strongest decreasing PM trends and the largest number of sites with significant trends is found for the summer season, according to both the model ensemble and observations. The winter PM trends are very weak and mostly insignificant. One important reason for that is the very modest reductions and even increases in the emissions of primary PM from residential heating in winter. It should be kept in mind that all findings regarding modeled versus observed PM trends are limited the regions where the sites are located. The analysis reveals a considerable variability of the role of the individual aerosols in PM10 trends across European countries. The multi-model simulations, supported by available observations, point to decreases in SO4−2 concentrations playing an overall dominant role. Also, we see relatively large contributions of the trends of NH4+ and NO3− to PM10 decreasing trends in Germany, Denmark, Poland and the Po Valley, while the reductions of primary PM emissions appears to be a dominant factor in bringing down PM10 in France, Norway, Portugal, Greece and parts of the UK and Russia. Further discussions are given with respect to emission uncertainties and the effect of inter-annual meteorological variability on the trend analysis.

Author(s):  
Somchai Pathomsiri ◽  
Ali Haghani ◽  
Paul M. Schonfeld

Vehicle miles traveled (VMT) is an important factor in the development of transportation plans, emission mitigation measures, and energy conservation policies. Therefore, estimation of VMT is a crucial task supporting such plans and policies. This research addresses the estimation of VMT in households owning multiple vehicles. This sector is expected to use vehicles differently from single-vehicle households because usage of any vehicle may depend on usage of other vehicles. Previous studies concluded that there is a substitution effect between usages of two vehicles (i.e., greater usage of one vehicle lessens usage of the other). In view of more recent changes in sociodemographic structure, the problem was revisited with the 2001 National Household Travel Survey database. The proposed VMT model is a system of simultaneous equations. Each equation explains the VMT for one of the household's vehicles. The three-stage least-squares method was used to estimate the coefficients. A case study of two-vehicle households was investigated. The resulting model shows that VMT can be explained by variables such as the vehicle's newness, number of potential car users in a household, and household income. Surprisingly, the results show not a substitution effect but a spilling effect. The VMT of the first vehicle does not depend on how much the second vehicle is driven. However, increased use of the first vehicle tends to spill over and increase the use of the second one. Some explanation of this behavior shift is provided.


2017 ◽  
Vol 119 (13) ◽  
pp. 1-20
Author(s):  
Marcel V. J. Veenman

Metacognitive skills refers to individual abilities for regulating and controlling learning behavior. Orientation, goal setting, planning, monitoring, and evaluation are manifestations of those skills. Given that metacognitive skills directly affect learning behavior, they are a strong predictor of learning performance. Students display a huge variation in metacognitive skillfulness, dependent on age and experience. In this article, metacognitive skills are considered to be an acquired program of self-instructions, that is, an orderly series of condition-action rules that contain conditional knowledge about when to apply which skill, and operational instructions for how to implement a particular skill. This notion has implications for effective metacognitive instruction in deficient students. Prior to instruction, on-line assessments of metacognitive skillfulness during actual task performance are indispensable for the identification of deficient students and for tailoring metacognitive instruction to the individual needs of students. Instruction should subsequently address what skill to perform when, why, and how (WWW&H), embedded within the context of a given task. Moreover, instruction should explicitly inform students about the benefits of applying metacognitive skills to make them exert the required effort. Finally, teachers may act as role model to students by including explicit metacognitive instruction in their lessons.


Author(s):  
E. S. Ege ◽  
Y.-L. Shen

Experimental and numerical studies on fast cyclic loading of eutectic tin-lead solder and relevant micromechanical issues are presented. High-frequency twin-lap shear tests on solder joints show cracking inside the solder but often connecting the intruded tips of the intermetallic. Finite element modeling was carried out to study the effect of intermetallic morphology. Without the influence of local phase coarsening, the intrusion of intermetallic into the solder alloy is seen to trigger strain localization which promotes failure. The effect of local phase coarsening was also studied numerically, taking into account the individual phase arrangement. A coarser phase structure always shows a faster accumulation of local plastic strain, leading to early failure. Such results, in agreement with typical thermomechanical fatigue features, cannot be obtained from the traditional argument of strength vs. microstructural size. Modeling of the entire lap-shear specimen was also conducted for the purpose of quantifying the deformation behavior. The exact geometry of solder is found to play a dominant role in affecting the shear response.


2019 ◽  
Vol 19 (1) ◽  
pp. 53
Author(s):  
Khairan Nisa ◽  
Joserizal Serudji ◽  
Delmi Sulastri

Quality antenatal care has a major role in reducing maternal mortality. Every effort to improve quality must also be accompanied by efforts to pay attention to factors that contribute to improving the performance of midwives in providing services. The study used a combination of quantitative approaches in 67 midwives in the Bukittinggi and qualitatively in 15 informants, of which 9 people included in-depth interview informants to coordinator midwives, head of the Public health center and staffing and 6 FGD informants to midwives on duty at the health center.The results of quantitative data analysis, factors related to the performance of midwives are incentives, motivation and workload. Motivation is the most dominant factor related to the performance of midwives. The results of qualitative data analysis, the leadership plays an important role in increasing motivation to work midwives and optimizing the role of midwives in overcoming problems related to overlapping workloads. Midwives also need to increase their participation efforts and empower pregnant women so that programs can run well and provide positive feedback for improving the health status of pregnant women. Basically antenatal services provided by midwives are in accordance with standards, but the paradigm of antenatal care for pregnant women must shift from achieving quantity to focus on quality. To improve the performance of midwives in providing antenatal care, several efforts are needed: monitoring and evaluation of the quality of antenatal care by midwives, leadership involvement in efforts to increase midwife motivation both from supervision and reward management in non-material forms. Providing equal opportunities for midwives to improve competence through training, especially training related to quality antenatal care. In addition, the provision of infrastructure at the polindes needs attention. 


2018 ◽  
Author(s):  
Anna Katinka Petersen ◽  
Guy P. Brasseur ◽  
Idir Bouarar ◽  
Johannes Flemming ◽  
Michael Gauss ◽  
...  

Abstract. An operational multi-model forecasting system for air quality has been developed to provide air quality services for urban areas of China. The initial forecasting system included seven state-of-the-art computational models developed and executed in Europe and China (CHIMERE, IFS, EMEP MSC-W, WRF-Chem-MPIM, WRF-Chem-SMS, LOTOS-EUROS and SILAMtest). Several other models joined the prediction system recently, but are not considered in the present analysis. In addition to the individual models, a simple multi-model ensemble was constructed by deriving statistical quantities such as the median and the mean of the predicted concentrations. The prediction system provides daily forecasts and observational data of surface ozone, nitrogen dioxides and particulate matter for the 37 largest urban agglomerations in China (population higher than 3 million in 2010). These individual forecasts as well as the multi-model ensemble predictions for the next 72 hours are displayed as hourly outputs on a publicly accessible web site (www.marcopolo-panda.eu). In this paper, the performance of the predictions system (individual models and the multi-model ensemble) for the first operational year (April 2016 until June 2017) has been analysed through statistical indicators using the surface observational data reported at Chinese national monitoring stations. This evaluation aims to investigate a) the seasonal behavior, b) the geographical distribution and c) diurnal variations of the ensemble and model skills. Statistical indicators show that the ensemble product usually provides the best performance compared to the individual model forecasts. The ensemble product is robust even if occasionally some individual model results are missing. Overall and in spite of some discrepancies, the air quality forecasting system is well suited for the prediction of air pollution events and has the ability to provide alert warning (binary prediction) of air pollution events if bias corrections are applied to improve the ozone predictions.


1987 ◽  
Vol 67 (4) ◽  
pp. 1181-1192 ◽  
Author(s):  
S. C. SHEPPARD ◽  
C. L. GIBB ◽  
J. L. HAWKINS ◽  
W. R. REMPHREY

Hormesis is the stimulation of growth by very low levels of inhibitors or stressors. This phenomenon may be useful in crops where the usual cultural factors have been optimized. The literature indicates that substantial stimulation of early growth of strawberries (Fragaria × ananassa) could be achieved by exposing transplants to low doses of ionizing radiation. Experiments were conducted to test the effectiveness and reliability of X rays as a hormetic agent. Plants of a day-neutral cultivar Hecker and of a June-bearing cultivar Glooscap were irradiated at 0.5–16 Gy and planted in pots. The plants were grown outdoors and growth was recorded each week. Significant stimulation above the controls in the number of trifoliate leaves occurred in the day-neutral cultivar. This effect persisted until the first phase of fruiting. No significant stimulatory effects were observed at any time in the June-bearing cultivar. Two field trials with a June-bearing cultivar Redcoat, irradiated at doses of 0.5 and 2 Gy, also revealed no significant stimulation. The dominant factor regulating early growth was the size of the individual transplants. Therefore, although hormetic stimulation may occur, it will be difficult to quantify and optimize and it will not likely be useful for practical application.Key words: X ray, transplant, day-neutral, June-bearing


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Anne A. Andere ◽  
Meaghan L. Pimsler ◽  
Aaron M. Tarone ◽  
Christine J. Picard

Abstract The production of male and female offspring is often determined by the presence of specific sex chromosomes which control sex-specific expression, and sex chromosomes evolve through reduced recombination and specialized gene content. Here we present the genomes of Chrysomya rufifacies, a monogenic blow fly (females produce female or male offspring, exclusively) by separately sequencing and assembling each type of female and the male. The genomes (> 25X coverage) do not appear to have any sex-linked Muller F elements (typical for many Diptera) and exhibit little differentiation between groups supporting the morphological assessments of C. rufifacies homomorphic chromosomes. Males in this species are associated with a unimodal coverage distribution while females exhibit bimodal coverage distributions, suggesting a potential difference in genomic architecture. The presence of the individual-sex draft genomes herein provides new clues regarding the origination and evolution of the diverse sex-determining mechanisms observed within Diptera. Additional genomic analysis of sex chromosomes and sex-determining genes of other blow flies will allow a refined evolutionary understanding of how flies with a typical X/Y heterogametic amphogeny (male and female offspring in similar ratios) sex determination systems evolved into one with a dominant factor that results in single sex progeny in a chromosomally monomorphic system.


1994 ◽  
Vol 266 (1) ◽  
pp. H21-H27 ◽  
Author(s):  
M. Kollai ◽  
G. Jokkel ◽  
I. Bonyhay ◽  
J. Tomcsanyi ◽  
A. Naszlady

The extent of dependence of cardiac vagal tone on arterial baroreceptor input has been studied in 12 healthy, young adult subjects. Cardiac vagal tone was defined as the chang in R-R interval after complete cholinergic blockade by atropine. Baroreflex sensitivity was determined with the "Oxford-method": R-R interval was regressed against systolic pressure. The interindividual correlation between cardiac vagal tone and baroreflex sensitivity for falling pressures was found to be significant, but not close (R = 0.81, P = 0.002). In each subject, the baroreflex regression line for falling pressures was extrapolated to the post-atropine R-R interval level; 50 mmHg was considered as minimum and 80 mmHg as maximum threshold level for the integrated baroreflex. From the relation between the individual regression lines and the minimum and maximum threshold levels, it was concluded that cardiac vagal tone could be generated by both baroreflex-dependent and -independent mechanisms, the ratio of which varies in different individuals, with the baroreflex-dependent mechanism being the dominant factor.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1476 ◽  
Author(s):  
Mirjam Schilling ◽  
Anne Bridgeman ◽  
Nicki Gray ◽  
Jonny Hertzog ◽  
Philip Hublitz ◽  
...  

The Zika virus (ZIKV) has received much attention due to an alarming increase in cases of neurological disorders including congenital Zika syndrome associated with infection. To date, there is no effective treatment available. An immediate response by the innate immune system is crucial for effective control of the virus. Using CRISPR/Cas9-mediated knockouts in A549 cells, we investigated the individual contributions of the RIG-I-like receptors MDA5 and RIG-I to ZIKV sensing and control of this virus by using a Brazilian ZIKV strain. We show that RIG-I is the main sensor for ZIKV in A549 cells. Surprisingly, we observed that loss of RIG-I and consecutive type I interferon (IFN) production led to virus-induced apoptosis. ZIKV non-structural protein NS5 was reported to interfere with type I IFN receptor signaling. Additionally, we show that ZIKV NS5 inhibits type I IFN induction. Overall, our study highlights the importance of RIG-I-dependent ZIKV sensing for the prevention of virus-induced cell death and shows that NS5 inhibits the production of type I IFN.


Sign in / Sign up

Export Citation Format

Share Document