scholarly journals A group contribution method for estimating the vapour pressures of α-pinene oxidation products

2006 ◽  
Vol 6 (6) ◽  
pp. 1455-1467 ◽  
Author(s):  
M. Capouet ◽  
J.-F. Müller

Abstract. A prediction method based on group contribution principles is proposed for estimating the vapour pressure of α-pinene oxidation products. Temperature dependent contributions are provided for the following chemical groups: carbonyl, nitrate, hydroxy, hydroperoxy, acyl peroxy nitrate and carboxy. On the basis of observed vapour pressure differences between isomers of diols and dinitrates, a simple refinement is introduced in the method to account for the influence of substitutions on the vapour pressure for alcohols and nitrates. The vapour pressures predicted with this new method have been compared with the predictions from UNIFAC (Asher et al., 2002). Given the large uncertainties of the vapour pressure data for the least volatile compounds, further experimental studies of subcooled vapour pressures of multifunctional compounds at ambient temperatures are required for better parameterizations. Among the α-pinene products identified to date, pinic acid and hydroxy pinonic acid are predicted to be the least volatile compounds, with estimated vapour pressures of 3×10−6 torr and 6×10−7 torr, respectively. The vapour pressure of the other primary products range from 10−5 to 10−3 torr, with hydroxy hydroperoxides presenting the lowest values. Noting that multifunctional carboxylic acids, in particular pinic acid, are believed to be mostly present as dimers in laboratory conditions, we suggest that the partial vapour pressure of the pinic acid dimer should be close to the experimental subcooled vapour pressure for pinic acid (estimated at ~10−6 torr) due to its large contribution to the total concentration (dimer+monomer) in experimental conditions.

2005 ◽  
Vol 5 (6) ◽  
pp. 11249-11276 ◽  
Author(s):  
M. Capouet ◽  
J. F. Müller

Abstract. A prediction method based on group contribution principles is proposed for estimating the vapour pressure of α-pinene oxidation products. Temperature dependent contributions are provided for the following chemical groups: carbonyl, nitrate, hydroxy, hydroperoxide, acyl peroxy nitrate and acid. On the basis of observed vapour pressure differences between isomers of diols and dinitrates, a simple refinement is introduced in the method, which allows to account for the influence of the substitutions on the vapour pressure for the hydroxy and nitrate functionalities. In general, the predicted vapour pressures of multifunctional compounds show a better agreement with experimental data (within a factor 2–3) than the UNIFAC method (Asher et al., 2002). Among the α-pinene products identified to date, pinic acid and hydroxy pinonic acid are predicted to be the least volatile compounds, with estimated vapour pressures of 3×10−6 torr and 6×10−7 torr, respectively. The vapour pressure of the other primary products range from 10−5 to 10−3 torr, with hydroxy hydroperoxides presenting the lowest values. Noting that multifunctional carboxylic acids, in particular pinic acid, are believed to be mostly present as dimers in laboratory conditions, we suggest that the partial vapour pressure of the pinic acid dimer should be close to the experimental subcooled vapour pressure for pinic acid (estimated at ~10−6 torr) due to its large contribution to the total concentration (dimer+monomer) in experimental conditions.


2021 ◽  
Vol 7 (13) ◽  
pp. eabe2952
Author(s):  
Houssni Lamkaddam ◽  
Josef Dommen ◽  
Ananth Ranjithkumar ◽  
Hamish Gordon ◽  
Günther Wehrle ◽  
...  

Aerosols still present the largest uncertainty in estimating anthropogenic radiative forcing. Cloud processing is potentially important for secondary organic aerosol (SOA) formation, a major aerosol component: however, laboratory experiments fail to mimic this process under atmospherically relevant conditions. We developed a wetted-wall flow reactor to simulate aqueous-phase processing of isoprene oxidation products (iOP) in cloud droplets. We find that 50 to 70% (in moles) of iOP partition into the aqueous cloud phase, where they rapidly react with OH radicals, producing SOA with a molar yield of 0.45 after cloud droplet evaporation. Integrating our experimental results into a global model, we show that clouds effectively boost the amount of SOA. We conclude that, on a global scale, cloud processing of iOP produces 6.9 Tg of SOA per year or approximately 20% of the total biogenic SOA burden and is the main source of SOA in the mid-troposphere (4 to 6 km).


1951 ◽  
Vol 42 (1) ◽  
pp. 115-122 ◽  
Author(s):  
D. S. Sarkaria ◽  
A. W. A. Brown

A number of liquid mosquito repellents were assessed for vapour repellency power in an olfactometer mounted in a very large cage filled with females of Aëdes aegypti. They were also tested for their knockdown power in fumigation bottles. Their vapour pressures were determined by the Ramsay-Young method.All the liquids showed vapour repellency, and in 39 out of the 42 tested this effect was highly significant. The highest vapour repellency ratings were shown by compounds already known to be the most effective repellents.Although the more volatile compounds such as citronellal tend to show the highest repellency ratings, nevertheless compounds of low vapour pressure such as indalone, DMP and isobornyl morpholinoacetate may also show high vapour repellency. It is concluded that vapour repellency, although in the first instance dependent upon volatility, can vary independently of vapour pressure, so that compounds may be found which afford not only a long protection period due to their nonvolatility, but also a high vapour repellency due to the potency of the comparatively few molecules that are volatilised.The vapours of most of the repellents were found to induce knockdown of mosquitos, but there was no correlation between the speed of this process and the vapour repellency of the compounds.


Author(s):  
R. F. Sabirov ◽  
A. F. Makhotkin ◽  
Yu. N. Sakharov ◽  
I. A. Makhotkin ◽  
I. Yu. Sakharov

Experimental studies of the kinetics and mechanism of the process, decomposition of apatite by phosphoric acid, in the Apatite-H3PO4-H2O system without the addition of sulfuric acid have been performed. The study of the decomposition process of Kovdorsky apatite with certain particle sizes was carried out in a batch reactor with a volume of 1 dm3 with stirring of the reaction mixture, and an initial concentration of phosphoric acid of 17% by weight, at a temperature of 78–82 °C. Observation of the process was carried out by determining the concentration of phosphoric acid and the concentration of monocalcium phosphate. The acidity of the reaction mixture was determined by the pH meter readings (pH-105 MA with a glass combined-ESC-10603 electrode). It was shown that during the whole process a constant smooth increase in the pH value of the reaction mixture to pH 6 occurs. Comparison of the pH values of the reaction mixture during the actual at the time of determining the concentration of phosphoric acid and pH of phosphoric acid of the corresponding concentration in the aqueous solution shows that the pH value of the reaction mixture is significantly affected by the presence of monocalcium phosphate gel. During the process, during the first thirty minutes, the concentration of phosphoric acid decreases from 17 to 10% by weight, the corresponding quantitative formation of monocalcium phosphate gel and a proportional increase in the pH of the reaction mixture. Then, as the concentration of phosphoric acid decreases, the process slows down and does not proceed to the end under the experimental conditions. The dependence of the concentration of hydrogen ions in the reaction mixture on the time of the process of decomposition of apatite in phosphoric acid, which is presented in logarithmic coordinates, shows that the mechanism of formation of hydrogen ions during the whole process does not change. Thus, it is shown that the process of decomposition of apatite by phosphoric acid in the Apatite-H3PO4-H2O system proceeds with the formation of an intermediate product - monocalcium phosphate gel. When this occurs, a corresponding significant change in the pH values of the reaction mixture occurs. During the whole process there is a constant decrease in the concentration of phosphoric acid.


Author(s):  
Svetlana M. Kramer ◽  
Mariya V. Terekhova ◽  
Inna V. Artamonova

In work the possibility of red sludge (waste of aluminum production by Bayer's method) to adsorb phosphate ions from water solutions at various concentration of ions and in the pH range from 3 to 10 is studied. Relevance of use of red sludge for receiving on its basis of sorbents is reasoned. For identification of the studied object the qualitative and quantitative composition of red sludge was established by the method of the X-ray phase analysis. The technique of red slage activation by hydrochloric acid, and also an adsorption technique of phosphate ions on the red sludge surface is described. Experimental studies of adsorption of phosphate ions on the surface of the red slage activated by hydrochloric acid depending on рН and concentration of initial solution were conducted. The dependence of adsorption phosphate ions on the red slage activated by НСl on рН and on the initial concentration of phosphate ions in solution is presented. These dependences of a relative fraction of distribution of various ions of phosphoric acid on рН are given in work. The form of ion phosphate having the greatest adsorptive activity on the red slage activated by hydrochloric acid in experimental conditions is revealed. Experimental data on dependence of adsorption of phosphate ions on their initial concentration in solution are described by Frumkin's isotherm. The constant of the adsorptive balance, limit adsorption, the parameter of intermolecular interaction of the adsorbed particles are calculated. Optimum conditions for adsorption of phosphate ions on red slage are established.Forcitation:Kramer S.M., Terekhova M.V., Artamonova I.V. Adsorption of phosphate ions on red sludge. Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 2017. V. 60. N 8. P. 80-83.


Author(s):  
John A. Hughes

Within social science the experiment has an ambiguous place. With the possible exception of social psychology, there are few examples of strictly experimental studies. The classic study still often cited is the Hawthorne experiments, which began in 1927, and is used mainly to illustrate what became known as the ‘Hawthorne Effect’, that is, the unintended influence of the research itself on the results of the study. Yet, experimental design is often taken within social research as the embodiment of the scientific method which, if the social sciences are to reach the maturity of the natural sciences, social research should seek to emulate. Meeting this challenge meant trying to devise ways of applying the logic of the experiment to ‘non-experimental’ situations where it was not possible directly to manipulate the experimental conditions. Criticisms have come from two main sources: first, from researchers who claim that the techniques used to control factors within non-experimental situations are unrealizable with current statistical methods and, second, those who reject the very idea of hypothesis-testing as an ambition for social research.


1958 ◽  
Vol 104 (437) ◽  
pp. 1123-1129 ◽  
Author(s):  
Anne Broadhurst

It has been clinically observed that psychiatric patients in general (6, 11) and schizophrenic patients in particular (1, 4) show abnormalities of mental speed, being “retarded” or slower than normals on many measures. Confirmatory evidence on this point is to be found but much of the early work on speed of schizophrenic reactivity used measures of speed of motor performance (12, 13) or of reaction time under various conditions (6), ignoring more fundamental slowness of thought processes. The present studies are concentrated on the recent finding that schizophrenics show abnormally slow mental speed measured in a problem-solving situation (4, 18, 19). The aim of the investigation was to discover the exact conditions under which this abnormality appears, and, thence, by manipulating the experimental conditions, to be able to bring speed of mental functioning under experimental control. This paper describes the attempt to bring speed under control by means of drugs. A second paper (2) deals with the effect of practice upon mental speed.


2019 ◽  
Vol 19 (11) ◽  
pp. 7649-7665 ◽  
Author(s):  
Yujue Wang ◽  
Min Hu ◽  
Yuchen Wang ◽  
Jing Zheng ◽  
Dongjie Shang ◽  
...  

Abstract. Nitro-aromatic compounds (NACs), as important contributors to the light absorption by brown carbon, have been widely observed in various ambient atmospheres; however, their formation in the urban atmosphere was little studied. In this work, we report an intensive field study of NACs in summer 2016 at an urban Beijing site, characterized by both high-NOx and anthropogenic VOC dominated conditions. We investigated the factors that influence NAC formation (e.g., NO2, VOC precursors, RH and photolysis) through quantification of eight NACs, along with major components in fine particulate matter, selected volatile organic compounds, and gases. The average total concentration of the quantified NACs was 6.63 ng m−3, higher than those reported in other summertime studies (0.14–6.44 ng m−3). 4-Nitrophenol (4NP, 32.4 %) and 4-nitrocatechol (4NC, 28.5 %) were the top two most abundant NACs, followed by methyl-nitrocatechol (MNC), methyl-nitrophenol (MNP), and dimethyl-nitrophenol (DMNP). The oxidation of toluene and benzene in the presence of NOx was found to be a more dominant source of NACs than primary biomass burning emissions. The NO2 concentration level was found to be an important factor influencing the secondary formation of NACs. A transition from low- to high-NOx regimes coincided with a shift from organic- to inorganic-dominated oxidation products. The transition thresholds were NO2 ∼ 20 ppb for daytime and NO2∼25 ppb for nighttime conditions. Under low-NOx conditions, NACs increased with NO2, while the NO3- concentrations and (NO3-)/NACs ratios were lower, implying organic-dominated products. Under high-NOx conditions, NAC concentrations did not further increase with NO2, while the NO3- concentrations and (NO3-)/NACs ratios showed increasing trends, signaling a shift from organic- to inorganic-dominated products. Nighttime enhancements were observed for 3M4NC and 4M5NC, while daytime enhancements were noted for 4NP, 2M4NP, and DMNP, indicating different formation pathways for these two groups of NACs. Our analysis suggested that the aqueous-phase oxidation was likely the major formation pathway of 4M5NC and 3M5NC, while photo-oxidation of toluene and benzene in the presence of NO2 could be more important for the formation of nitrophenol and its derivatives. Using the (3M4NC+4M5NC) ∕ 4NP ratios as an indicator of the relative contribution of aqueous-phase and gas-phase oxidation pathways to NAC formation, we observed that the relative contribution of aqueous-phase pathways increased at elevated ambient RH and remained constant at RH > 30 %. We also found that the concentrations of VOC precursors (e.g., toluene and benzene) and aerosol surface area acted as important factors in promoting NAC formation, and photolysis as an important loss pathway for nitrophenols.


2014 ◽  
Vol 32 (No. 1) ◽  
pp. 69-76 ◽  
Author(s):  
H. Zhao ◽  
F. Zhou ◽  
P. Dziugan ◽  
Y. Yao ◽  
J. Zhang ◽  
...  

The effect of malolactic fermentation (MLF) on the flavour quality of cider was examined. Leuconostoc mesenteroides subsp. mesenteroides Z25 was used to start MLF taking place at 25°C for 12 days after the completion of alcoholic fermentation (AF) by Saccharomyces cerevisiae. Strain Z25 showed good activity in starting MLF of cider with 10% alcoholic concentration. The content of malic acid, whose high concentration gives negative organoleptic characteristics to the cider, dropped significantly from 4.0 g/l to 0.25 g/l via MLF. The concentration of lactic acid increased significantly from 0.99 g/l to 3.50 g/l, contributing to volatile acidity. The acetic acid content of the ciders was 0.74 g/l. Among 51 volatile compounds detected by GC-MS, higher alcohols, esters, and carbonyl compounds were formed in ciders through MLF. The total concentration of aromatic substances doubled compared to the controls. The occurrence of MLF started by strain Z25 enabled the cider containing more volatile compounds and an acceptable adjustment of organic acids. This is the first report on using L. mesenteroides subsp. mesenteroides strain Z25 to start the MLF of apple wine improving the flavour quality of the cider produced.  


2005 ◽  
Vol 79 (4) ◽  
pp. 291-302 ◽  
Author(s):  
M.Y. Manga-González ◽  
C. González-Lanza

AbstractThe transmission, control and the relationship between Dicrocoelium dendriticum and its definitive (sheep and cattle) and intermediate (molluscs and ants) hosts under natural and experimental conditions are described. Eleven species of molluscs and four of ants were found infected with larval D. dendriticum in León province, north-west Spain. Infected ants were observed between April and November and in tetania at 7.5–26.9°C. The highest shedding of eggs by sheep and cattle was detected in winter. Two treatments applied in November and January were the most effective. In experimentally infected molluscs, the parasite was not visible under the stereomicroscope, at least until 50 days post-infection (p.i.). The prepatent period in experimentally infected lambs was 49–79 days p.i. The number of eggs per gram increased with the days p.i. and the parasite burden. The aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transpeptidase, leukocyte and neutrophil values of infected lambs increased, but those of lymphocytes decreased. Using the enzyme-linked immunosorbert assay technique, the IgG antibody response to excretory–secretory and somatic antigens of D. dendriticum was positive from day 30 p.i., although the maximum antibody levels were observed on day 60 p.i. The number of worms per lamb ranged between 30 and 2063. Cholangitis and cholangiectasia of the septal bile and hepatic ducts were observed. The best enzymatic systems for adult and larval D. dendriticum characterization were lactate dehydrogenase, glucose phosphate isomerase and phosphoglucomutase. Genetic variability of adult D. dendriticum was high using the random amplified polymorphic DNA technique.


Sign in / Sign up

Export Citation Format

Share Document