scholarly journals Development of an aerosol microphysical module: Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS)

2014 ◽  
Vol 14 (7) ◽  
pp. 10659-10699
Author(s):  
H. Matsui ◽  
M. Koike ◽  
Y. Kondo ◽  
J. D. Fast ◽  
M. Takigawa

Abstract. Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimation of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can represent these parameters explicitly by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol size (12 bins) and BC mixing state (10 bins) for a total of 120 bins. The particles with diameters from 1 to 40 nm are resolved using an additional 8 size bins to calculate NPF. The ATRAS module is implemented in the WRF-chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging and SOA processes over East Asia during the spring of 2009. BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10–20% over northern East Asia and 20–35% over southern East Asia. A clear north-south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. Application of ATRAS to East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes under different meteorological conditions and emissions.

2014 ◽  
Vol 14 (18) ◽  
pp. 10315-10331 ◽  
Author(s):  
H. Matsui ◽  
M. Koike ◽  
Y. Kondo ◽  
J. D. Fast ◽  
M. Takigawa

Abstract. Number concentrations, size distributions, and mixing states of aerosols are essential parameters for accurate estimations of aerosol direct and indirect effects. In this study, we develop an aerosol module, designated the Aerosol Two-dimensional bin module for foRmation and Aging Simulation (ATRAS), that can explicitly represent these parameters by considering new particle formation (NPF), black carbon (BC) aging, and secondary organic aerosol (SOA) processes. A two-dimensional bin representation is used for particles with dry diameters from 40 nm to 10 μm to resolve both aerosol sizes (12 bins) and BC mixing states (10 bins) for a total of 120 bins. The particles with diameters between 1 and 40 nm are resolved using additional eight size bins to calculate NPF. The ATRAS module is implemented in the WRF-Chem model and applied to examine the sensitivity of simulated mass, number, size distributions, and optical and radiative parameters of aerosols to NPF, BC aging, and SOA processes over East Asia during the spring of 2009. The BC absorption enhancement by coating materials is about 50% over East Asia during the spring, and the contribution of SOA processes to the absorption enhancement is estimated to be 10–20% over northern East Asia and 20–35% over southern East Asia. A clear north–south contrast is also found between the impacts of NPF and SOA processes on cloud condensation nuclei (CCN) concentrations: NPF increases CCN concentrations at higher supersaturations (smaller particles) over northern East Asia, whereas SOA increases CCN concentrations at lower supersaturations (larger particles) over southern East Asia. The application of ATRAS in East Asia also shows that the impact of each process on each optical and radiative parameter depends strongly on the process and the parameter in question. The module can be used in the future as a benchmark model to evaluate the accuracy of simpler aerosol models and examine interactions between NPF, BC aging, and SOA processes under different meteorological conditions and emissions.


2021 ◽  
Vol 14 (1) ◽  
pp. 259-273
Author(s):  
Ah-Hyun Kim ◽  
Seong Soo Yum ◽  
Dong Yeong Chang ◽  
Minsu Park

Abstract. A new sulfate aerosol hygroscopicity parameter (κSO4) parameterization is suggested that is capable of considering the two major sulfate aerosols, H2SO4 and (NH4)2SO4, using the molar ratio of ammonium to sulfate (R). An alternative κSO4 parameterization method is also suggested that utilizes typical geographical distribution patterns of sulfate and ammonium, which can be used when ammonium data are not available for model calculation. Using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), the impacts of different κSO4 parameterizations on cloud microphysical properties and cloud radiative effects in East Asia are examined. Comparisons with the observational data obtained from an aircraft field campaign suggest that the new κSO4 parameterizations simulate more reliable aerosol and cloud condensation nuclei concentrations, especially over the sea in East Asia, than the original κSO4 parameterization in WRF-Chem that assumes sulfate aerosols as (NH4)2SO4 only. With the new κSO4 parameterizations, the simulated cloud microphysical properties and precipitation became significantly different, resulting in a greater cloud albedo effect of about −1.5 W m−2 in East Asia than that with the original κSO4 parameterization. The new κSO4 parameterizations are simple and readily applicable to numerical studies investigating the impact of sulfate aerosols in aerosol–cloud interactions without additional computational expense.


2005 ◽  
Vol 62 (7) ◽  
pp. 2037-2057 ◽  
Author(s):  
István Geresdi ◽  
Roy Rasmussen

Abstract This paper investigates how the characteristics of aerosol particles (size distribution and solubility) as well as the presence of giant nuclei affect drizzle formation in stably stratified layer clouds. A new technique was developed to simulate the evolution of water drops from wet aerosol particles and implemented into a detailed microphysical model. The detailed microphysical model was incorporated into a one-dimensional parcel model and a two-dimensional version of the fifth-generation Pennsylvania State University–National Center for Atmospheric Research (PSU–NCAR) Mesoscale Model (MM5). Sensitivity experiments were performed with the parcel model using a constant updraft speed and with the two-dimensional model by simulating flow over a bell-shaped mountain. The results showed that 1) stably stratified clouds with weak updrafts (<10 cm s−1) can form drizzle relatively rapidly for maritime size distributions with any aerosol particle solubility, and for continental size distributions with highly insoluble particles due to the low number of activated cloud condensation nuclei (CCN) (<100 cm−3), 2) drizzle is suppressed in stably stratified clouds with weak updrafts (<10 cm s−1) for highly soluble urban and extreme urban size distributions, and 3) the presence of giant nuclei only has an effect on drizzle formation for the highly soluble continental aerosol size distributions.


Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1712 ◽  
Author(s):  
Valentin Thoury-Monbrun ◽  
Hélène Angellier-Coussy ◽  
Valérie Guillard ◽  
David Legland ◽  
Sébastien Gaucel

This work aims at assessing the impact of two-dimensional particle size distribution (2D-PSD) on the identification of water vapor diffusivity in micrometric size cellulose particles displaying a size aspect ratio lower than 2 and a cylindrical shape. First, different methodologies to obtain the two-dimensional (2D) particle size distribution (diameter versus length) were compared, based on image analysis. Then, experimental sorption kinetics were obtained by using a quartz crystal microbalance (QCM) coupled with a water vapor adsorption system. Diffusivity values were estimated when considering either the 2D-PSD or global descriptors, such as the mean or median diameter and length of particles. Results revealed that the use of an analytical approach when considering the 2D mean-PSD or the median-PSD was the most accurate way to get diffusivity values at the scale of particles in a polydisperse sample of cellulose particles. Following this approach, a water vapor apparent diffusivity of 3.1 × 10−12 ± 2.3 × 10−12 m2·s−1 was found for the considered cellulose sample. Neglecting PSD in diffusivity estimation led to an underestimation of a factor of 2. This procedure could be extended for all the polydisperse samples in order to have an accurate estimation of water vapor diffusivity at the scale of single particles.


2021 ◽  
Vol 16 ◽  
Author(s):  
Joice Sophia Ponraj ◽  
Muniraj Vignesh Narayanan ◽  
Ranjith Kumar Dharman ◽  
Valanarasu Santiyagu ◽  
Ramalingam Gopal ◽  
...  

: Increasing energy crisis across the globe requires immediate solutions. Two-dimensional (2D) materials are in great significance because of its application in energy storage and conversion devices but the production process significantly impacts the environment thereby posing a severe problem in the field of pollution control. Green synthesis method provides an eminent way of reduction in pollutants. This article reviews the importance of green synthesis in the energy application sector. The focus of 2D materials like graphene, MoS2, VS2 in energy storage and conversion devices are emphasized based on supporting recent reports. The emerging Li-ion batteries are widely reviewed along with their promising alternatives like Zn, Na, Mg batteries and are featured in detail. The impact of green methods in the energy application field are outlined. Moreover, future outlook in the energy sector is envisioned by proposing an increase in 2D elemental materials research.


Author(s):  
Weiqi Xu ◽  
Chun Chen ◽  
Yanmei Qiu ◽  
Conghui Xie ◽  
Yunle Chen ◽  
...  

Organic aerosol (OA), a large fraction of fine particles, has a large impact on climate radiative forcing and human health, and the impact depends strongly on size distributions. Here we...


Author(s):  
Almudena Sanjurjo-de-No ◽  
Blanca Arenas-Ramírez ◽  
José Mira ◽  
Francisco Aparicio-Izquierdo

An accurate estimation of exposure is essential for road collision rate estimation, which is key when evaluating the impact of road safety measures. The quasi-induced exposure method was developed to estimate relative exposure for different driver groups based on its main hypothesis: the not-at-fault drivers involved in two-vehicle collisions are taken as a random sample of driver populations. Liability assignment is thus crucial in this method to identify not-at-fault drivers, but often no liability labels are given in collision records, so unsupervised analysis tools are required. To date, most researchers consider only driver and speed offences in liability assignment, but an open question is if more information could be added. To this end, in this paper, the visual clustering technique of self-organizing maps (SOM) has been applied to better understand the multivariate structure in the data, to find out the most important variables for driver liability, analyzing their influence, and to identify relevant liability patterns. The results show that alcohol/drug use could be influential on liability and further analysis is required for disability and sudden illness. More information has been used, given that a larger proportion of the data was considered. SOM thus appears as a promising tool for liability assessment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ferenc Fekete ◽  
Katalin Mangó ◽  
Máté Déri ◽  
Evelyn Incze ◽  
Annamária Minus ◽  
...  

AbstractCYP2C9, one of the most abundant hepatic cytochrome P450 enzymes, is involved in metabolism of 15–20% of clinically important drugs (warfarin, sulfonylureas, phenytoin, non-steroid anti-inflammatory drugs). To avoid adverse events and/or impaired drug-response, CYP2C9 pharmacogenetic testing is recommended. The impact of CYP2C9 polymorphic alleles (CYP2C9*2, CYP2C9*3) and phenoconverting non-genetic factors on CYP2C9 function and expression was investigated in liver tissues from Caucasian subjects (N = 164). The presence of CYP2C9*3 allele was associated with CYP2C9 functional impairment, and CYP2C9*2 influenced tolbutamide 4′-hydroxylase activity only in subjects with two polymorphic alleles, whereas the contribution of CYP2C8*3 was not confirmed. In addition to CYP2C9 genetic polymorphisms, non-genetic factors (co-medication with CYP2C9-specific inhibitors/inducers and non-specific factors including amoxicillin + clavulanic acid therapy or chronic alcohol consumption) contributed to the prediction of hepatic CYP2C9 activity; however, a CYP2C9 genotype–phenotype mismatch still existed in 32.6% of the subjects. Substantial variability in CYP2C9 mRNA levels, irrespective of CYP2C9 genotype, was demonstrated; however, CYP2C9 induction and non-specific non-genetic factors potentially resulting in liver injury appeared to modify CYP2C9 expression. In conclusion, complex implementation of CYP2C9 genotype and non-genetic factors for the most accurate estimation of hepatic CYP2C9 activity may improve efficiency and safety of medication with CYP2C9 substrate drugs in clinical practice.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 791
Author(s):  
Muzamil Hussain ◽  
Syed Hasan Askari Rizvi ◽  
Naseem Abbas ◽  
Uzair Sajjad ◽  
Muhammad Rizwan Shad ◽  
...  

Titanium, stainless steel, and CoCrMo alloys are the most widely used biomaterials for orthopedic applications. The most common causes of orthopedic implant failure after implantation are infections, inflammatory response, least corrosion resistance, mismatch in elastic modulus, stress shielding, and excessive wear. To address the problems associated with implant materials, different modifications related to design, materials, and surface have been developed. Among the different methods, coating is an effective method to improve the performance of implant materials. In this article, a comprehensive review of recent studies has been carried out to summarize the impact of coating materials on metallic implants. The antibacterial characteristics, biodegradability, biocompatibility, corrosion behavior, and mechanical properties for performance evaluation are briefly summarized. Different effective coating techniques, coating materials, and additives have been summarized. The results are useful to produce the coating with optimized properties.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2784
Author(s):  
Georgios Maliaris ◽  
Christos Gakias ◽  
Michail Malikoutsakis ◽  
Georgios Savaidis

Shot peening is one of the most favored surface treatment processes mostly applied on large-scale engineering components to enhance their fatigue performance. Due to the stochastic nature and the mutual interactions of process parameters and the partially contradictory effects caused on the component’s surface (increase in residual stress, work-hardening, and increase in roughness), there is demand for capable and user-friendly simulation models to support the responsible engineers in developing optimal shot-peening processes. The present paper contains a user-friendly Finite Element Method-based 2D model covering all major process parameters. Its novelty and scientific breakthrough lie in its capability to consider various size distributions and elastoplastic material properties of the shots. Therewith, the model is capable to provide insight into the influence of every individual process parameter and their interactions. Despite certain restrictions arising from its 2D nature, the model can be accurately applied for qualitative or comparative studies and processes’ assessments to select the most promising one(s) for the further experimental investigations. The model is applied to a high-strength steel grade used for automotive leaf springs considering real shot size distributions. The results reveal that the increase in shot velocity and the impact angle increase the extent of the residual stresses but also the surface roughness. The usage of elastoplastic material properties for the shots has been proved crucial to obtain physically reasonable results regarding the component’s behavior.


Sign in / Sign up

Export Citation Format

Share Document